Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Research Intern - Université de Montréal
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
Principal supervisor :
Collaborating Alumni
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate
Independent visiting researcher - Technical University of Munich
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating researcher
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

Continuous-Time Meta-Learning with Forward Mode Differentiation
Tristan Deleu
David Kanaa
Leo Feng
Giancarlo Kerg
Drawing inspiration from gradient-based meta-learning methods with infinitely small gradient steps, we introduce Continuous-Time Meta-Learni… (see more)ng (COMLN), a meta-learning algorithm where adaptation follows the dynamics of a gradient vector field. Specifically, representations of the inputs are meta-learned such that a task-specific linear classifier is obtained as a solution of an ordinary differential equation (ODE). Treating the learning process as an ODE offers the notable advantage that the length of the trajectory is now continuous, as opposed to a fixed and discrete number of gradient steps. As a consequence, we can optimize the amount of adaptation necessary to solve a new task using stochastic gradient descent, in addition to learning the initial conditions as is standard practice in gradient-based meta-learning. Importantly, in order to compute the exact meta-gradients required for the outer-loop updates, we devise an efficient algorithm based on forward mode differentiation, whose memory requirements do not scale with the length of the learning trajectory, thus allowing longer adaptation in constant memory. We provide analytical guarantees for the stability of COMLN, we show empirically its efficiency in terms of runtime and memory usage, and we illustrate its effectiveness on a range of few-shot image classification problems.
Coordination Among Neural Modules Through a Shared Global Workspace
Anirudh Goyal
Aniket Rajiv Didolkar
Alex Lamb
Kartikeya Badola
Nan Rosemary Ke
Nasim Rahaman
Jonathan Binas
Charles Blundell
Michael Curtis Mozer
Deep learning has seen a movement away from representing examples with a monolithic hidden state towards a richly structured state. For exam… (see more)ple, Transformers segment by position, and object-centric architectures decompose images into entities. In all these architectures, interactions between different elements are modeled via pairwise interactions: Transformers make use of self-attention to incorporate information from other positions and object-centric architectures make use of graph neural networks to model interactions among entities. We consider how to improve on pairwise interactions in terms of global coordination and a coherent, integrated representation that can be used for downstream tasks. In cognitive science, a global workspace architecture has been proposed in which functionally specialized components share information through a common, bandwidth-limited communication channel. We explore the use of such a communication channel in the context of deep learning for modeling the structure of complex environments. The proposed method includes a shared workspace through which communication among different specialist modules takes place but due to limits on the communication bandwidth, specialist modules must compete for access. We show that capacity limitations have a rational basis in that (1) they encourage specialization and compositionality and (2) they facilitate the synchronization of otherwise independent specialists.
Graph Neural Networks with Learnable Structural and Positional Representations
Vijay Prakash Dwivedi
Anh Tuan Luu
Thomas Laurent
Xavier Bresson
Graph neural networks (GNNs) have become the standard learning architectures for graphs. GNNs have been applied to numerous domains ranging … (see more)from quantum chemistry, recommender systems to knowledge graphs and natural language processing. A major issue with arbitrary graphs is the absence of canonical positional information of nodes, which decreases the representation power of GNNs to distinguish e.g. isomorphic nodes and other graph symmetries. An approach to tackle this issue is to introduce Positional Encoding (PE) of nodes, and inject it into the input layer, like in Transformers. Possible graph PE are Laplacian eigenvectors. In this work, we propose to decouple structural and positional representations to make easy for the network to learn these two essential properties. We introduce a novel generic architecture which we call LSPE (Learnable Structural and Positional Encodings). We investigate several sparse and fully-connected (Transformer-like) GNNs, and observe a performance increase for molecular datasets, from 1.79% up to 64.14% when considering learnable PE for both GNN classes.
Properties from mechanisms: an equivariance perspective on identifiable representation learning
Kartik Ahuja
Jason Hartford
A key goal of unsupervised representation learning is ``inverting'' a data generating process to recover its latent properties. Existing wo… (see more)rk that provably achieves this goal relies on strong assumptions on relationships between the latent variables (e.g., independence conditional on auxiliary information). In this paper, we take a very different perspective on the problem and ask, ``Can we instead identify latent properties by leveraging knowledge of the mechanisms that govern their evolution?'' We provide a complete characterization of the sources of non-identifiability as we vary knowledge about a set of possible mechanisms. In particular, we prove that if we know the exact mechanisms under which the latent properties evolve, then identification can be achieved up to any equivariances that are shared by the underlying mechanisms. We generalize this characterization to settings where we only know some hypothesis class over possible mechanisms, as well as settings where the mechanisms are stochastic. We demonstrate the power of this mechanism-based perspective by showing that we can leverage our results to generalize existing identifiable representation learning results. These results suggest that by exploiting inductive biases on mechanisms, it is possible to design a range of new identifiable representation learning approaches.
Boosting Exploration in Multi-Task Reinforcement Learning using Adversarial Networks
Ramnath Kumar
Tristan Deleu
Biasly: a machine learning based platform for automatic racial discrimination detection in online texts
David Bamman
Chris Dyer
Noah A. Smith. 2014
Steven Bird
Ewan Klein
Edward Loper
Nat-527
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova. 2019
Bert
Samuel Gehman
Suchin Gururangan
Maarten Sap
Dan Hendrycks
Kevin Gimpel. 2020
Gaussian
Alex Lamb
Di He … (see 22 more)
Anirudh Goyal
Guolin Ke
Feng Liao
Zhenzhong Lan
Mingda Chen
Sebastian Goodman
Yann LeCun
Bernhard E. Boser
J. Denker
Don-608 nie Henderson
Robin Howard
Wayne Hubbard
Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
Mike Lewis
Warning : this paper contains content that may 001 be offensive or upsetting. 002 Detecting hateful, toxic, and otherwise racist 003 or sexi… (see more)st language in user-generated online con-004 tents has become an increasingly important task 005 in recent years. Indeed, the anonymity, the 006 transience, the size of messages, and the dif-007 ficulty of management, facilitate the diffusion 008 of racist or hateful messages across the Inter-009 net. The critical influence of this cyber-racism 010 is no longer limited to social media, but also 011 has a significant effect on our society : corpo-012 rate business operation, users’ health, crimes, 013 etc. Traditional racist speech reporting chan-014 nels have proven inadequate due to the enor-015 mous explosion of information, so there is an 016 urgent need for a method to automatically and 017 promptly detect texts with racial discrimination. 018 We propose in this work, a machine learning-019 based approach to enable automatic detection 020 of racist text content over the internet. State-of-021 the-art machine learning models that are able 022 to grasp language structures are adapted in this 023 study. Our main contribution include 1) a large 024 scale racial discrimination data set collected 025 from three distinct sources and annotated ac-026 cording to a guideline developed by specialists, 027 2) a set of machine learning models with vari-028 ous architectures for racial discrimination de-029 tection, and 3) a web-browser-based software 030 that assist users to debias their texts when us-031 ing the internet. All these resources are made 032 publicly available.
Chunked Autoregressive GAN for Conditional Waveform Synthesis
Max Morrison
Rithesh Kumar
Kundan Kumar
Prem Seetharaman
Compositional Attention: Disentangling Search and Retrieval
Sarthak Mittal
Sharath Chandra Raparthy
Multi-head, key-value attention is the backbone of transformer-like model architectures which have proven to be widely successful in recent … (see more)years. This attention mechanism uses multiple parallel key-value attention blocks (called heads), each performing two fundamental computations: (1) search - selection of a relevant entity from a set via query-key interaction, and (2) retrieval - extraction of relevant features from the selected entity via a value matrix. Standard attention heads learn a rigid mapping between search and retrieval. In this work, we first highlight how this static nature of the pairing can potentially: (a) lead to learning of redundant parameters in certain tasks, and (b) hinder generalization. To alleviate this problem, we propose a novel attention mechanism, called Compositional Attention, that replaces the standard head structure. The proposed mechanism disentangles search and retrieval and composes them in a dynamic, flexible and context-dependent manner. Through a series of numerical experiments, we show that it outperforms standard multi-head attention on a variety of tasks, including some out-of-distribution settings. Through our qualitative analysis, we demonstrate that Compositional Attention leads to dynamic specialization based on the type of retrieval needed. Our proposed mechanism generalizes multi-head attention, allows independent scaling of search and retrieval and is easy to implement in a variety of established network architectures.
Contrastive introspection (ConSpec) to rapidly identify invariant prototypes for success in RL
Chen Sun
Mila
Wannan Yang
Benjamin Alsbury-Nealy
Thomas Jiralerspong
†. BlakeRichards
Reinforcement learning (RL) algorithms have achieved notable success in recent years, but still struggle with fundamental issues in long-ter… (see more)m credit assignment. It remains difficult to learn in situations where success is contingent upon multiple critical steps that are distant in time from each other and from a sparse reward; as is often the case in real life. Moreover, how RL algorithms assign credit in these difficult situations is typically not coded in a way that can rapidly generalize to new situations. Here, we present an approach using offline contrastive learning, which we call contrastive introspection (ConSpec), that can be added to any existing RL algorithm and addresses both issues. In ConSpec, a contrastive loss is used during offline replay to identify invariances among successful episodes. This takes advantage of the fact that it is easier to retrospectively identify the small set of steps that success is contingent upon than it is to prospectively predict reward at every step taken in the environment. ConSpec stores this knowledge in a collection of prototypes summarizing the intermediate states required for success. During training, arrival at any state that matches these prototypes generates an intrinsic reward that is added to any external rewards. As well, the reward shaping provided by ConSpec can be made to preserve the optimal policy of the underlying RL agent. The prototypes in ConSpec provide two key benefits for credit assignment: (1) They enable rapid identification of all the critical states. (2) They do so in a readily interpretable manner, enabling out of distribution generalization when sensory features are altered. In summary, ConSpec is a modular system that can be added to any existing RL algorithm to improve its long-term credit assignment.
Discrete Compositional Representations as an Abstraction for Goal Conditioned Reinforcement Learning
Riashat Islam
Hongyu Zang
Anirudh Goyal
Alex Lamb
Kenji Kawaguchi
Xin Li
Romain Laroche
Remi Tachet des Combes
Goal-conditioned reinforcement learning (RL) is a promising direction for training agents that are capable of solving multiple tasks and rea… (see more)ch a diverse set of objectives. How to \textit{specify} and \textit{ground} these goals in such a way that we can both reliably reach goals during training as well as generalize to new goals during evaluation remains an open area of research. Defining goals in the space of noisy, high-dimensional sensory inputs is one possibility, yet this poses a challenge for training goal-conditioned agents, or even for generalization to novel goals. We propose to address this by learning compositional representations of goals and processing the resulting representation via a discretization bottleneck, for coarser specification of goals, through an approach we call DGRL. We show that discretizing outputs from goal encoders through a bottleneck can work well in goal-conditioned RL setups, by experimentally evaluating this method on tasks ranging from maze environments to complex robotic navigation and manipulation tasks. Additionally, we show a theoretical result which bounds the expected return for goals not observed during training, while still allowing for specifying goals with expressive combinatorial structure.
Discrete-Valued Neural Communication in Structured Architectures Enhances Generalization
Dianbo Liu
Alex Lamb
Kenji Kawaguchi
Anirudh Goyal
Chen Sun
Michael Curtis Mozer
In this appendix, as a complementary to Theorems 1–2, we provide additional theorems, Theorems 3–4, which further illustrate the two adv… (see more)antages of the discretization process by considering an abstract model with the discretization bottleneck. For the advantage on the sensitivity, the error due to potential noise and perturbation without discretization — the third term ξ(w, r′,M′, d) > 0 in Theorem 4 — is shown to be minimized to zero with discretization in Theorems 3. For the second advantage, the underlying dimensionality of N(M′,d′)(r,H) + ln(N(M,d)(r,Θ)/δ) without discretization (in the bound of Theorem 4) is proven to be reduced to the typically much smaller underlying dimensionality of L + ln(N(M,d)(r, E ×Θ) with discretization in Theorems 3. Here, for any metric space (M, d) and subset M ⊆ M, the r-converging number of M is defined by N(M,d)(r,M) = min { |C| : C ⊆ M,M ⊆ ∪c∈CB(M,d)[c, r]} where the (closed) ball of radius r at centered at c is denoted by B(M,d)[c, r] = {x ∈M : d(x, c) ≤ r}. See Appendix C.1 for a simple comparison between the bound of Theorem 3 and that of Theorem 4 when the metric spaces (M, d) and (M′, d′) are chosen to be Euclidean spaces.
Enhanced Biomedical Knowledge Discovery From Unstructured Text Using Contextual Embeddings
Iz Beltagy
Kyle Lo
Arman Cohan. 2019
Scib-500
R´ejean Ducharme
Rishi Bommasani
Kelly Davis
Claire Cardie
Billy Chiu
Sampo Pyysalo
Ivan Vuli´c
Extracting knowledge from large, unstruc-001 tured text corpora presents a challenge. Re-002 cently, authors have utilized unsupervised, 003… (see more) static word embeddings to uncover "latent 004 knowledge" contained within domain-specific 005 scientific corpora. Here semantic-similarity 006 measures between representations of concepts, 007 objects or entities were used to predict re-008 lationships, which were later verified using 009 physical methods. Static language models 010 have recently been surpassed at most down-011 stream tasks by massively pre-trained, contex-012 tual language models like BERT. Some have 013 postulated that contextualized embeddings po-014 tentially yield word representations superior 015 to static ones for knowledge-discovery pur-016 poses. In an effort to address this ques-017 tion, two biomedically-trained BERT models 018 (BioBERT, SciBERT) were used to encode 019 n = 500, 1000 or 5000 sentences containing 020 words of interest extracted from a biomedical 021 corpus (Coronavirus Open Research Dataset). 022 The n representations for the words of inter-023 est were subsequently extracted and then ag-024 gregated to yield static-equivalent word rep-025 resentations. These words belonged to the 026 vocabularies of intrinsic benchmarking tools 027 for the biomedical domain (Bio-SimVerb and 028 Bio-SimLex), which assess quality of word 029 representations using semantic-similarity and 030 relatedness measures. Using intrinsic bench-031 marking tasks, feasibility of using contextual-032 ized word representations for knowledge dis-033 covery tasks can be assessed: Word represen-034 tations that better encode described reality are 035 expected to perform better (i.e. closer to do-036 main experts). As postulated, BERT embed-037 dings outperform static counterparts