Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Real-time fine finger motion decoding for transradial amputees with surface electromyography
In Kidney Exchange Programs (KEPs), each participating patient is registered together with an incompatible donor. Donors without an incompat… (voir plus)ible patient can also register. Then, KEPs typically maximize overall patient benefit through donor exchanges. This aggregation of benefits calls into question potential individual patient disparities in terms of access to transplantation in KEPs. Considering solely this utilitarian objective may become an issue in the case where multiple exchange plans are optimal or near-optimal. In fact, current KEP policies are all-or-nothing, meaning that only one exchange plan is determined. Each patient is either selected or not as part of that unique solution. In this work, we seek instead to find a policy that contemplates the probability of patients of being in a solution. To guide the determination of our policy, we adapt popular fairness schemes to KEPs to balance the usual approach of maximizing the utilitarian objective. Different combinations of fairness and utilitarian objectives are modelled as conic programs with an exponential number of variables. We propose a column generation approach to solve them effectively in practice. Finally, we make an extensive comparison of the different schemes in terms of the balance of utility and fairness score, and validate the scalability of our methodology for benchmark instances from the literature.
In industrial environments, predicting human actions is essential for ensuring safe and effective collaboration between humans and robots. T… (voir plus)his paper introduces a perception framework that enables mobile robots to understand and share information about human actions in a decentralized way. The framework first allows each robot to build a spatial graph representing its surroundings, which it then shares with other robots. This shared spatial data is combined with temporal information to track human behavior over time. A swarm-inspired decision-making process is used to ensure all robots agree on a unified interpretation of the human's actions. Results show that adding more robots and incorporating longer time sequences improve prediction accuracy. Additionally, the consensus mechanism increases system resilience, making the multi-robot setup more reliable in dynamic industrial settings.
Impact de l'antibiothérapie par Daptomycine dans le traitement des bactériémies à Enterococcus faecium en réanimation : l'étude rétrospective multicentrique ENTERODAPTO.
Planning for many manipulation tasks, such as using tools or assembling parts, often requires both symbolic and geometric reasoning. Task an… (voir plus)d Motion Planning (TAMP) algorithms typically solve these problems by conducting a tree search over high-level task sequences while checking for kinematic and dynamic feasibility. While performant, most existing algorithms are highly inefficient as their time complexity grows exponentially with the number of possible actions and objects. Additionally, they only find a single solution to problems in which many feasible plans may exist. To address these limitations, we propose a novel algorithm called Stein Task and Motion Planning (STAMP) that leverages parallelization and differentiable simulation to efficiently search for multiple diverse plans. STAMP relaxes discrete-and-continuous TAMP problems into continuous optimization problems that can be solved using variational inference. Our algorithm builds upon Stein Variational Gradient Descent, a gradient-based variational inference algorithm, and parallelized differentiable physics simulators on the GPU to efficiently obtain gradients for inference. Further, we employ imitation learning to introduce action abstractions that reduce the inference problem to lower dimensions. We demonstrate our method on two TAMP problems and empirically show that STAMP is able to: 1) produce multiple diverse plans in parallel; and 2) search for plans more efficiently compared to existing TAMP baselines.
Calibrated Value-Aware Model Learning with Stochastic Environment Models
Claas Voelcker
Anastasiia Pedan
Arash Ahmadian
Romina Abachi
Igor Gilitschenski
Amir-massoud Farahmand
The idea of value-aware model learning, that models should produce accurate value estimates, has gained prominence in model-based reinforcem… (voir plus)ent learning. The MuZero loss, which penalizes a model's value function prediction compared to the ground-truth value function, has been utilized in several prominent empirical works in the literature. However, theoretical investigation into its strengths and weaknesses is limited. In this paper, we analyze the family of value-aware model learning losses, which includes the popular MuZero loss. We show that these losses, as normally used, are uncalibrated surrogate losses, which means that they do not always recover the correct model and value function. Building on this insight, we propose corrections to solve this issue. Furthermore, we investigate the interplay between the loss calibration, latent model architectures, and auxiliary losses that are commonly employed when training MuZero-style agents. We show that while deterministic models can be sufficient to predict accurate values, learning calibrated stochastic models is still advantageous.
Recent unlearning methods for LLMs are vulnerable to relearning attacks: knowledge believed-to-be-unlearned re-emerges by fine-tuning on a s… (voir plus)mall set of (even seemingly-unrelated) examples. We study this phenomenon in a controlled setting for example-level unlearning in vision classifiers. We make the surprising discovery that forget-set accuracy can recover from around 50% post-unlearning to nearly 100% with fine-tuning on just the retain set -- i.e., zero examples of the forget set. We observe this effect across a wide variety of unlearning methods, whereas for a model retrained from scratch excluding the forget set (gold standard), the accuracy remains at 50%. We observe that resistance to relearning attacks can be predicted by weight-space properties, specifically,
Magnetoencephalography (MEG) is a cutting-edge neuroimaging technique that measures the intricate brain dynamics underlying cognitive proces… (voir plus)ses with an unparalleled combination of high temporal and spatial precision. MEG data analytics has always relied on advanced signal processing and mathematical and statistical tools for various tasks ranging from data cleaning to probing the signals' rich dynamics and estimating the neural sources underlying the surface-level recordings. Like in most domains, the surge in Artificial Intelligence (AI) has led to the increased use of Machine Learning (ML) methods for MEG data classification. More recently, an emerging trend in this field is using Artificial Neural Networks (ANNs) to address many MEG-related tasks. This review provides a comprehensive overview of how ANNs are being used with MEG data from three vantage points: First, we review work that employs ANNs for MEG signal classification, i.e., for brain decoding. Second, we report on work that has used ANNs as putative models of information processing in the human brain. Finally, we examine studies that use ANNs as techniques to tackle methodological questions in MEG, including artifact correction and source estimation. Furthermore, we assess the current strengths and limitations of using ANNs with MEG and discuss future challenges and opportunities in this field. Finally, by establishing a detailed portrait of the field and providing practical recommendations for the future, this review seeks to provide a helpful reference for both seasoned MEG researchers and newcomers to the field who are interested in using ANNs to enhance the exploration of the complex dynamics of the human brain with MEG.