Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Self-supervised anomaly detection in computer vision and beyond: A survey and outlook.
Evaluating autonomous vehicle stacks (AVs) in simulation typically involves replaying driving logs from real-world recorded traffic. However… (voir plus), agents replayed from offline data are not reactive and hard to intuitively control. Existing approaches address these challenges by proposing methods that rely on heuristics or generative models of real-world data but these approaches either lack realism or necessitate costly iterative sampling procedures to control the generated behaviours. In this work, we take an alternative approach and propose CtRL-Sim, a method that leverages return-conditioned offline reinforcement learning (RL) to efficiently generate reactive and controllable traffic agents. Specifically, we process real-world driving data through a physics-enhanced Nocturne simulator to generate a diverse offline RL dataset, annotated with various rewards. With this dataset, we train a return-conditioned multi-agent behaviour model that allows for fine-grained manipulation of agent behaviours by modifying the desired returns for the various reward components. This capability enables the generation of a wide range of driving behaviours beyond the scope of the initial dataset, including adversarial behaviours. We show that CtRL-Sim can generate realistic safety-critical scenarios while providing fine-grained control over agent behaviours.
Theories of attention and learning have hypothesized a central role for high-frequency bursting in cognitive functions, but experimental rep… (voir plus)orts of burst-mediated representations in vivo have been limited. Here we used a novel demultiplexing approach by considering a conjunctive burst code. We studied this code in vivo while animals learned to report direct electrical stimulation of the somatosensory cortex and found two acquired yet independent representations. One code, the event rate, showed a sparse and succint stiumulus representation and a small modulation upon detection errors. The other code, the burst fraction, correlated more globally with stimulation and more promptly responded to detection errors. Bursting modulation was potent and its time course evolved, even in cells that were considered unresponsive based on the firing rate. During the later stages of training, this modulation in bursting happened earlier, gradually aligning temporally with the representation in event rate. The alignment of bursting and event rate modulation sharpened the firing rate response, and was strongly associated behavioral accuracy. Thus a fine-grained separation of spike timing patterns reveals two signals that accompany stimulus representations: an error signal that can be essential to guide learning and a sharpening signal that could implement attention mechanisms.
As applications of machine learning proliferate, innovative algorithms inspired by specific real-world challenges have become increasingly i… (voir plus)mportant. Such work offers the potential for significant impact not merely in domains of application but also in machine learning itself. In this paper, we describe the paradigm of application-driven research in machine learning, contrasting it with the more standard paradigm of methods-driven research. We illustrate the benefits of application-driven machine learning and how this approach can productively synergize with methods-driven work. Despite these benefits, we find that reviewing, hiring, and teaching practices in machine learning often hold back application-driven innovation. We outline how these processes may be improved.
To address the interlinked biodiversity and climate crises, we need an understanding of where species occur and how these patterns are chang… (voir plus)ing. However, observational data on most species remains very limited, and the amount of data available varies greatly between taxonomic groups. We introduce the problem of predicting species occurrence patterns given (a) satellite imagery, and (b) known information on the occurrence of other species. To evaluate algorithms on this task, we introduce SatButterfly, a dataset of satellite images, environmental data and observational data for butterflies, which is designed to pair with the existing SatBird dataset of bird observational data. To address this task, we propose a general model, R-Tran, for predicting species occurrence patterns that enables the use of partial observational data wherever found. We find that R-Tran outperforms other methods in predicting species encounter rates with partial information both within a taxon (birds) and across taxa (birds and butterflies). Our approach opens new perspectives to leveraging insights from species with abundant data to other species with scarce data, by modelling the ecosystems in which they co-occur.
The widespread online communication in a modern multilingual world has provided opportunities to blend more than one language (aka code-mixe… (voir plus)d language) in a single utterance. This has resulted a formidable challenge for the computational models due to the scarcity of annotated data and presence of noise. A potential solution to mitigate the data scarcity problem in low-resource setup is to leverage existing data in resource-rich language through translation. In this paper, we tackle the problem of code-mixed (Hinglish and Bengalish) to English machine translation. First, we synthetically develop HINMIX, a parallel corpus of Hinglish to English, with ~4.2M sentence pairs. Subsequently, we propose RCMT, a robust perturbation based joint-training model that learns to handle noise in the real-world code-mixed text by parameter sharing across clean and noisy words. Further, we show the adaptability of RCMT in a zero-shot setup for Bengalish to English translation. Our evaluation and comprehensive analyses qualitatively and quantitatively demonstrate the superiority of RCMT over state-of-the-art code-mixed and robust translation methods.
Feature visualization is one of the most popular techniques used to interpret the internal behavior of individual units of trained deep neur… (voir plus)al networks. Based on activation maximization, they consist of finding synthetic or natural inputs that maximize neuron activations. This paper introduces an optimization framework that aims to deceive feature visualization through adversarial model manipulation. It consists of finetuning a pre-trained model with a specifically introduced loss that aims to maintain model performance, while also significantly changing feature visualization. We provide evidence of the success of this manipulation on several pre-trained models for the classification task with ImageNet.
2024-03-24
Proceedings of the AAAI Conference on Artificial Intelligence (publié)
8 years after the visual question answering (VQA) task was proposed, accuracy remains the primary metric for automatic evaluation. VQA Accur… (voir plus)acy has been effective so far in the IID evaluation setting. However, our community is undergoing a shift towards open-ended generative models and OOD evaluation. In this new paradigm, the existing VQA Accuracy metric is overly stringent and underestimates the performance of VQA systems. Thus, there is a need to develop more robust automatic VQA metrics that serve as a proxy for human judgment. In this work, we propose to leverage the in-context learning capabilities of instruction-tuned large language models (LLMs) to build a better VQA metric. We formulate VQA evaluation as an answer-rating task where the LLM is instructed to score the accuracy of a candidate answer given a set of reference answers. We demonstrate the proposed metric better correlates with human judgment compared to existing metrics across several VQA models and benchmarks. We hope wide adoption of our metric will contribute to better estimating the research progress on the VQA task. We plan to release the evaluation code and collected human judgments.
2024-03-24
Proceedings of the AAAI Conference on Artificial Intelligence (publié)