Publications

Exploring the roles of artificial intelligence in surgical education: A scoping review
Elif Bilgic
Andrew Gorgy
Alison Yang
Michelle Cwintal
Hamed Ranjbar
Kalin Kahla
Dheeksha Reddy
Kexin Li
Helin Ozturk
Eric Zimmermann
Andrea Quaiattini
Jason M. Harley
IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic Signal Control
François-Xavier Devailly
Denis Larocque
Scaling adaptive traffic signal control involves dealing with combinatorial state and action spaces. Multi-agent reinforcement learning atte… (voir plus)mpts to address this challenge by distributing control to specialized agents. However, specialization hinders generalization and transferability, and the computational graphs underlying neural-network architectures—dominating in the multi-agent setting—do not offer the flexibility to handle an arbitrary number of entities which changes both between road networks, and over time as vehicles traverse the network. We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks which adapts to the structure of any road network, to learn detailed representations of traffic signal controllers and their surroundings. Our decentralized approach enables learning of a transferable-adaptive-traffic-signal-control policy. After being trained on an arbitrary set of road networks, our model can generalize to new road networks and traffic distributions, with no additional training and a constant number of parameters, enabling greater scalability compared to prior methods. Furthermore, our approach can exploit the granularity of available data by capturing the (dynamic) demand at both the lane level and the vehicle level. The proposed method is tested on both road networks and traffic settings never experienced during training. We compare IG-RL to multi-agent reinforcement learning and domain-specific baselines. In both synthetic road networks and in a larger experiment involving the control of the 3,971 traffic signals of Manhattan, we show that different instantiations of IG-RL outperform baselines.
Leishmania parasites exchange drug-resistance genes through extracellular vesicles
Noélie Douanne
George Dong
Atia Amin
Lorena Bernardo
David Langlais
Martin Olivier
Christopher Fernandez-Prada
Naming Autism in the Right Context
Andres Roman-Urrestarazu
Varun Warrier
Integrating Equity, Diversity, and Inclusion throughout the lifecycle of Artificial Intelligence in health
Milka Nyariro
Elham Emami
Health care systems are the infrastructures that are put together to deliver health and social services to the population at large. These or… (voir plus)ganizations are increasingly applying Artificial Intelligence (AI) to improve the efficiency and effectiveness of health and social care. Unfortunately, both health care systems and AI are confronted with a lack of Equity, Diversity, and Inclusion (EDI). This short paper focuses on the importance of integrating EDI concepts throughout the life cycle of AI in health. We discuss the risks that the lack of EDI in the design, development and implementation of AI-based tools might have on the already marginalized communities and populations in the healthcare setting. Moreover, we argue that integrating EDI principles and practice throughout the lifecycle of AI in health has an important role in achieving health equity for all populations. Further research needs to be conducted to explore how studies in AI-health have integrated.
Annotation Cost-Sensitive Deep Active Learning with Limited Data (Student Abstract)
Renaud Bernatchez
Flavie Lavoie-Cardinal
Estimating Social Influence from Observational Data
Caterina De Bacco
David Blei
We consider the problem of estimating social influence, the effect that a person's behavior has on the future behavior of their peers. The k… (voir plus)ey challenge is that shared behavior between friends could be equally explained by influence or by two other confounding factors: 1) latent traits that caused people to both become friends and engage in the behavior, and 2) latent preferences for the behavior. This paper addresses the challenges of estimating social influence with three contributions. First, we formalize social influence as a causal effect, one which requires inferences about hypothetical interventions. Second, we develop Poisson Influence Factorization (PIF), a method for estimating social influence from observational data. PIF fits probabilistic factor models to networks and behavior data to infer variables that serve as substitutes for the confounding latent traits. Third, we develop assumptions under which PIF recovers estimates of social influence. We empirically study PIF with semi-synthetic and real data from Last.fm, and conduct a sensitivity analysis. We find that PIF estimates social influence most accurately compared to related methods and remains robust under some violations of its assumptions.
A Generalized Bootstrap Target for Value-Learning, Efficiently Combining Value and Feature Predictions
Anthony GX-Chen
Veronica Chelu
Head2Toe: Utilizing Intermediate Representations for Better Transfer Learning
Utku Evci
Vincent Dumoulin
Michael Curtis Mozer
3D Infomax improves GNNs for Molecular Property Prediction
Hannes Stärk
Gabriele Corso
Prudencio Tossou
Christian Dallago
Stephan Günnemann
Pietro Lio
Molecular property prediction is one of the fastest-growing applications of deep learning with critical real-world impacts. Including 3D mol… (voir plus)ecular structure as input to learned models improves their predictions for many molecular properties. However, this information is infeasible to compute at the scale required by most real-world applications. We propose pre-training a model to understand the geometry of molecules given only their 2D molecular graph. Using methods from self-supervised learning, we maximize the mutual information between a 3D summary vector and the representations of a Graph Neural Network (GNN) such that they contain latent 3D information. During fine-tuning on molecules with unknown geometry, the GNN still generates implicit 3D information and can use it to inform downstream tasks. We show that 3D pre-training provides significant improvements for a wide range of molecular properties, such as a 22% average MAE reduction on eight quantum mechanical properties. Crucially, the learned representations can be effectively transferred between datasets with vastly different molecules.
Learning To Cut By Looking Ahead: Cutting Plane Selection via Imitation Learning
Max B. Paulus
Giulia Zarpellon
Andreas Krause
Chris J. Maddison
Cutting planes are essential for solving mixed-integer linear problems (MILPs), because they facilitate bound improvements on the optimal so… (voir plus)lution value. For selecting cuts, modern solvers rely on manually designed heuristics that are tuned to gauge the potential effectiveness of cuts. We show that a greedy selection rule explicitly looking ahead to select cuts that yield the best bound improvement delivers strong decisions for cut selection - but is too expensive to be deployed in practice. In response, we propose a new neural architecture (NeuralCut) for imitation learning on the lookahead expert. Our model outperforms standard baselines for cut selection on several synthetic MILP benchmarks. Experiments with a B&C solver for neural network verification further validate our approach, and exhibit the potential of learning methods in this setting.
Only tails matter: Average-Case Universality and Robustness in the Convex Regime
Leonardo Cunha
Fabian Pedregosa
Damien Scieur