Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Linking DNA sequence to genomic function remains one of the grand challenges in genetics and genomics. Here, we combine large-scale single-m… (see more)olecule transcriptome sequencing of diverse cancer cell lines with cutting-edge machine learning to build LoRNASH, an RNA foundation model that learns how the nucleotide sequence of unspliced pre-mRNA dictates transcriptome architecture—the relative abundances and molecular structures of mRNA isoforms. Owing to its use of the StripedHyena architecture, LoRNASH handles extremely long sequence inputs (∼65 kilobase pairs), allowing for quantitative, zero-shot prediction of all aspects of transcriptome architecture, including isoform abundance, isoform structure, and the impact of DNA sequence variants on transcript structure and abundance. We anticipate that our public data release and proof-of-concept model will accelerate varying aspects of RNA biotechnology. More broadly, we envision the use of LoRNASH as a foundation for fine-tuning of any transcriptome-related downstream prediction task, including cell-type specific gene expression, splicing, and general RNA processing.