Découvrez le dernier rapport d'impact de Mila, qui met en lumière les réalisations exceptionnelles des membres de notre communauté au cours de la dernière année.
Rapport et guide politique GPAI: Vers une réelle égalité en IA
Rejoignez-nous à Mila le 26 novembre pour le lancement du rapport et du guide politique qui présente des recommandations concrètes pour construire des écosystèmes d'IA inclusifs.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
An exploratory cross-sectional study of the effects of ongoing relationships with accompanying patients on cancer care experience, self-efficacy, and psychological distress
We present SSS3D, a fast multi-objective NAS framework designed to find computationally efficient 3D semantic scene segmentation networks. I… (voir plus)t uses RandLA-Net, an off-the-shelf point-based network, as a super-network to enable weight sharing and reduce search time by 99.67% for single-stage searches. SSS3D has a complex search space composed of sampling and architectural parameters that can form 2.88 * 10^17 possible networks. To further reduce search time, SSS3D splits the complete search space and introduces a two-stage search that finds optimal subnetworks in 54% of the time required by single-stage searches.
The documentation practice for machine-learned (ML) models often falls short of established practices for traditional software, which impede… (voir plus)s model accountability and inadvertently abets inappropriate or misuse of models. Recently, model cards, a proposal for model documentation, have attracted notable attention, but their impact on the actual practice is unclear. In this work, we systematically study the model documentation in the field and investigate how to encourage more responsible and accountable documentation practice. Our analysis of publicly available model cards reveals a substantial gap between the proposal and the practice. We then design a tool named DocML aiming to (1) nudge the data scientists to comply with the model cards proposal during the model development, especially the sections related to ethics, and (2) assess and manage the documentation quality. A lab study reveals the benefit of our tool towards long-term documentation quality and accountability.
2023-04-19
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (publié)