A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Inverse Reinforcement Learning aims to recover reward models from expert demonstrations, but traditional methods yield"black-box"models that… (see more) are difficult to interpret and debug. In this work, we introduce GRACE (Generating Rewards As CodE), a method for using Large Language Models within an evolutionary search to reverse-engineer an interpretable, code-based reward function directly from expert trajectories. The resulting reward function is executable code that can be inspected and verified. We empirically validate GRACE on the BabyAI and AndroidWorld benchmarks, where it efficiently learns highly accurate rewards, even in complex, multi-task settings. Further, we demonstrate that the resulting reward leads to strong policies, compared to both competitive Imitation Learning and online RL approaches with ground-truth rewards. Finally, we show that GRACE is able to build complex reward APIs in multi-task setups.
We introduce ClustRecNet - a novel deep learning (DL)-based recommendation framework for determining the most suitable clustering algorithms… (see more) for a given dataset, addressing the long-standing challenge of clustering algorithm selection in unsupervised learning. To enable supervised learning in this context, we construct a comprehensive data repository comprising 34,000 synthetic datasets with diverse structural properties. Each of them was processed using 10 popular clustering algorithms. The resulting clusterings were assessed via the Adjusted Rand Index (ARI) to establish ground truth labels, used for training and evaluation of our DL model. The proposed network architecture integrates convolutional, residual, and attention mechanisms to capture both local and global structural patterns from the input data. This design supports end-to-end training to learn compact representations of datasets and enables direct recommendation of the most suitable clustering algorithm, reducing reliance on handcrafted meta-features and traditional Cluster Validity Indices (CVIs). Comprehensive experiments across synthetic and real-world benchmarks demonstrate that our DL model consistently outperforms conventional CVIs (e.g. Silhouette, Calinski-Harabasz, Davies-Bouldin, and Dunn) as well as state-of-the-art AutoML clustering recommendation approaches (e.g. ML2DAC, AutoCluster, and AutoML4Clust). Notably, the proposed model achieves a 0.497 ARI improvement over the Calinski-Harabasz index on synthetic data and a 15.3% ARI gain over the best-performing AutoML approach on real-world data.
Post-Training Multimodal Large Language Models (MLLMs) to build interactive agents holds promise across domains such as computer-use, web na… (see more)vigation, and robotics. A key challenge in scaling such post-training is lack of high-quality downstream agentic task datasets with tasks that are diverse, feasible, and verifiable. Existing approaches for task generation rely heavily on human annotation or prompting MLLM with limited downstream environment information, which is either costly or poorly scalable as it yield tasks with limited coverage. To remedy this, we present AutoPlay, a scalable pipeline for task generation that explicitly explores interactive environments to discover possible interactions and current state information to synthesize environment-grounded tasks. AutoPlay operates in two stages: (i) an exploration phase, where an MLLM explorer agent systematically uncovers novel environment states and functionalities, and (ii) a task generation phase, where a task generator leverages exploration trajectories and a set of task guideline prompts as context to synthesize diverse, executable, and verifiable tasks. We show AutoPlay generates 20k tasks across 20 Android applications and 10k tasks across 13 applications Ubuntu applications to train mobile-use and computer-use agents. AutoPlay generated tasks enable large-scale task demonstration synthesis without human annotation by employing an MLLM task executor and verifier. This data enables training MLLM-based UI agents that improve success rates up to
We examine the capability of Multimodal Large Language Models (MLLMs) to tackle diverse domains that extend beyond the traditional language … (see more)and vision tasks these models are typically trained on. Specifically, our focus lies in areas such as Embodied AI, Games, UI Control, and Planning. To this end, we introduce a process of adapting an MLLM to a Generalist Embodied Agent (GEA). GEA is a single unified model capable of grounding itself across these varied domains through a multi-embodiment action tokenizer. GEA is trained with supervised learning on a large dataset of embodied experiences and with online RL in interactive simulators. We explore the data and algorithmic choices necessary to develop such a model. Our findings reveal the importance of training with cross-domain data and online RL for building generalist agents. The final GEA model achieves strong generalization performance to unseen tasks across diverse benchmarks compared to other generalist models and benchmark-specific approaches.
2025-01-01
Computer Vision and Pattern Recognition (published)
We examine the capability of Multimodal Large Language Models (MLLMs) to tackle diverse domains that extend beyond the traditional language … (see more)and vision tasks these models are typically trained on. Specifically, our focus lies in areas such as Embodied AI, Games, UI Control, and Planning. To this end, we introduce a process of adapting an MLLM to a Generalist Embodied Agent (GEA). GEA is a single unified model capable of grounding itself across these varied domains through a multi-embodiment action tokenizer. GEA is trained with supervised learning on a large dataset of embodied experiences and with online RL in interactive simulators. We explore the data and algorithmic choices necessary to develop such a model. Our findings reveal the importance of training with cross-domain data and online RL for building generalist agents. The final GEA model achieves strong generalization performance to unseen tasks across diverse benchmarks compared to other generalist models and benchmark-specific approaches.
We examine the capability of Multimodal Large Language Models (MLLMs) to tackle diverse domains that extend beyond the traditional language … (see more)and vision tasks these models are typically trained on. Specifically, our focus lies in areas such as Embodied AI, Games, UI Control, and Planning. To this end, we introduce a process of adapting an MLLM to a Generalist Embodied Agent (GEA). GEA is a single unified model capable of grounding itself across these varied domains through a multi-embodiment action tokenizer. GEA is trained with supervised learning on a large dataset of embodied experiences and with online RL in interactive simulators. We explore the data and algorithmic choices necessary to develop such a model. Our findings reveal the importance of training with cross-domain data and online RL for building generalist agents. The final GEA model achieves strong generalization performance to unseen tasks across diverse benchmarks compared to other generalist models and benchmark-specific approaches.
Multimodal Large Language Models (MLLMs) have demonstrated a wide range of capabilities across many domains including Embodied AI. In this w… (see more)ork, we study how to best ground a MLLM into different embodiments and their associated action spaces, including both continuous and discrete actions. For continuous actions, a set of learned tokenizations that capture an action at various resolutions allows for sufficient modeling precision, yielding the best performance on downstream tasks. For discrete actions, semantically aligning these actions with the native output token space of the MLLM leads to the strongest performance. We arrive at these lessons via a thorough study of seven action grounding approaches on five different environments, encompassing over 114 embodied tasks.
Reinforcement learning practitioners often avoid hierarchical policies, especially in image-based observation spaces. Typically, the single-… (see more)task performance improvement over flat-policy counterparts does not justify the additional complexity associated with implementing a hierarchy. However, by introducing multiple decision-making levels, hierarchical policies can compose lower-level policies to more effectively generalize between tasks, highlighting the need for multi-task evaluations. We analyze the benefits of hierarchy through simulated multi-task robotic control experiments from pixels. Our results show that hierarchical policies trained with task conditioning can (1) increase performance on training tasks, (2) lead to improved reward and state-space generalizations in similar tasks, and (3) decrease the complexity of fine tuning required to solve novel tasks. Thus, we believe that hierarchical policies should be considered when building reinforcement learning architectures capable of generalizing between tasks.
Multimodal Large Language Models (MLLMs) have demonstrated a wide range of capabilities across many domains, including Embodied AI. In this … (see more)work, we study how to best ground a MLLM into different embodiments and their associated action spaces, with the goal of leveraging the multimodal world knowledge of the MLLM. We first generalize a number of methods through a unified architecture and the lens of action space adaptors. For continuous actions, we show that a learned tokenization allows for sufficient modeling precision, yielding the best performance on downstream tasks. For discrete actions, we demonstrate that semantically aligning these actions with the native output token space of the MLLM leads to the strongest performance. We arrive at these lessons via a thorough study of seven action space adapters on five different environments, encompassing over 114 embodied tasks.
Generative Artificial Intelligence (AI) has made significant advancements in recent years, particularly with the development of large langua… (see more)ge and diffusion models. These generative models have demonstrated impressive capabilities in various tasks, such as text generation and image and audio synthesis. Concurrently, Reinforcement Learning (RL) has made significant strides in solving complex sequential decision-making problems with the help of external knowledge sources . However, there remains untapped potential in combining generative models with RL algorithms to tackle real-world challenges, particularly to improve sample efficiency of tabula rasa training by introducing priors from related domains such as visual question-answering, image captioning and image generation.
This workshop aims to bring together researchers and practitioners from the fields of generative AI and reinforcement learning to explore the latest advances, methodologies, and applications. By fostering collaborations between these two domains, we intend to unlock new opportunities for addressing complex problems that lie at the intersection of both fields.