FedSwarm: An Adaptive Federated Learning Framework for Scalable AIoT
Haizhou Du
Chengdong Ni
Chaoqian Cheng
Qiao Xiang
Xi Chen
Federated learning (FL) is a key solution for datadriven the Artificial Intelligence of Things (AIoT). Although much progress has been made,… (voir plus) scalability remains a core challenge for real-world FL deployments. Existing solutions either suffer from accuracy loss or do not fully address the connectivity dynamicity of FL systems. In this article, we tackle the scalability issue with a novel, adaptive FL framework called FedSwarm, which improves system scalability for AIoT by deploying multiple collaborative edge servers. FedSwarm has two novel features: 1) adaptiveness on the number of local updates and 2) dynamicity of the synchronization between edge devices and edge servers. We formulate FedSwarm as a local update adaptation and perdevice dynamic server selection problem and prove FedSwarm‘s convergence bound. We further design a control mechanism consisting of a learning-based algorithm for collaboratively providing local update adaptation on the servers’ side and a bonus-based strategy for spurring dynamic per-device server selection on the devices’ side. Our extensive evaluation shows that FedSwarm significantly outperforms other studies with better scalability, lower energy consumption, and higher model accuracy.
FedSwarm: An Adaptive Federated Learning Framework for Scalable AIoT
Haizhou Du
Chengdong Ni
Chaoqian Cheng
Qiao Xiang
Xi Chen
Federated learning (FL) is a key solution for datadriven the Artificial Intelligence of Things (AIoT). Although much progress has been made,… (voir plus) scalability remains a core challenge for real-world FL deployments. Existing solutions either suffer from accuracy loss or do not fully address the connectivity dynamicity of FL systems. In this article, we tackle the scalability issue with a novel, adaptive FL framework called FedSwarm, which improves system scalability for AIoT by deploying multiple collaborative edge servers. FedSwarm has two novel features: 1) adaptiveness on the number of local updates and 2) dynamicity of the synchronization between edge devices and edge servers. We formulate FedSwarm as a local update adaptation and perdevice dynamic server selection problem and prove FedSwarm‘s convergence bound. We further design a control mechanism consisting of a learning-based algorithm for collaboratively providing local update adaptation on the servers’ side and a bonus-based strategy for spurring dynamic per-device server selection on the devices’ side. Our extensive evaluation shows that FedSwarm significantly outperforms other studies with better scalability, lower energy consumption, and higher model accuracy.
Generalization of deep learning models for hepatic steatosis grading using B-mode ultrasound images
Pedro Vianna
Yue Qi
Michael Chassé
An Tang
Guy Cloutier
Heterogeneous ensemble prediction model of CO emission concentration in municipal solid waste incineration process using virtual data and real data hybrid-driven
Runyu Zhang
Heng Xia
Jiakun Chen
Wen Yu
JunFei Qiao
Implications of conscious AI in primary healthcare
The conversation about consciousness of artificial intelligence (AI) is an ongoing topic since 1950s. Despite the numerous applications of A… (voir plus)I identified in healthcare and primary healthcare, little is known about how a conscious AI would reshape its use in this domain. While there is a wide range of ideas as to whether AI can or cannot possess consciousness, a prevailing theme in all arguments is uncertainty. Given this uncertainty and the high stakes associated with the use of AI in primary healthcare, it is imperative to be prepared for all scenarios including conscious AI systems being used for medical diagnosis, shared decision-making and resource management in the future. This commentary serves as an overview of some of the pertinent evidence supporting the use of AI in primary healthcare and proposes ideas as to how consciousnesses of AI can support or further complicate these applications. Given the scarcity of evidence on the association between consciousness of AI and its current state of use in primary healthcare, our commentary identifies some directions for future research in this area including assessing patients’, healthcare workers’ and policy-makers’ attitudes towards consciousness of AI systems in primary healthcare settings.
Implications of conscious AI in primary healthcare
Implications of conscious AI in primary healthcare
The conversation about consciousness of artificial intelligence (AI) is an ongoing topic since 1950s. Despite the numerous applications of A… (voir plus)I identified in healthcare and primary healthcare, little is known about how a conscious AI would reshape its use in this domain. While there is a wide range of ideas as to whether AI can or cannot possess consciousness, a prevailing theme in all arguments is uncertainty. Given this uncertainty and the high stakes associated with the use of AI in primary healthcare, it is imperative to be prepared for all scenarios including conscious AI systems being used for medical diagnosis, shared decision-making and resource management in the future. This commentary serves as an overview of some of the pertinent evidence supporting the use of AI in primary healthcare and proposes ideas as to how consciousnesses of AI can support or further complicate these applications. Given the scarcity of evidence on the association between consciousness of AI and its current state of use in primary healthcare, our commentary identifies some directions for future research in this area including assessing patients’, healthcare workers’ and policy-makers’ attitudes towards consciousness of AI systems in primary healthcare settings.
Iterative Graph Self-Distillation
Hanlin Zhang
Shuai Lin
Weiyang Liu
Pan Zhou
Xiaodan Liang
Eric P. Xing
Recently, there has been increasing interest in the challenge of how to discriminatively vectorize graphs. To address this, we propose a met… (voir plus)hod called Iterative Graph Self-Distillation (IGSD) which learns graph-level representation in an unsupervised manner through instance discrimination using a self-supervised contrastive learning approach. IGSD involves a teacher-student distillation process that uses graph diffusion augmentations and constructs the teacher model using an exponential moving average of the student model. The intuition behind IGSD is to predict the teacher network representation of the graph pairs under different augmented views. As a natural extension, we also apply IGSD to semi-supervised scenarios by jointly regularizing the network with both supervised and self-supervised contrastive loss. Finally, we show that fine-tuning the IGSD-trained models with self-training can further improve graph representation learning. Empirically, we achieve significant and consistent performance gain on various graph datasets in both unsupervised and semi-supervised settings, which well validates the superiority of IGSD.
Neural network prediction of the effect of thermomechanical controlled processing on mechanical properties
Sushant Sinha
Denzel Guye
Xiaoping Ma
Kashif Rehman
S. Yue
Do not trust what you trust: Miscalibration in Semi-supervised Learning
Shambhavi Mishra
Balamurali Murugesan
Ismail Ben Ayed
Jose Dolz
State-of-the-art semi-supervised learning (SSL) approaches rely on highly confident predictions to serve as pseudo-labels that guide the tra… (voir plus)ining on unlabeled samples. An inherent drawback of this strategy stems from the quality of the uncertainty estimates, as pseudo-labels are filtered only based on their degree of uncertainty, regardless of the correctness of their predictions. Thus, assessing and enhancing the uncertainty of network predictions is of paramount importance in the pseudo-labeling process. In this work, we empirically demonstrate that SSL methods based on pseudo-labels are significantly miscalibrated, and formally demonstrate the minimization of the min-entropy, a lower bound of the Shannon entropy, as a potential cause for miscalibration. To alleviate this issue, we integrate a simple penalty term, which enforces the logit distances of the predictions on unlabeled samples to remain low, preventing the network predictions to become overconfident. Comprehensive experiments on a variety of SSL image classification benchmarks demonstrate that the proposed solution systematically improves the calibration performance of relevant SSL models, while also enhancing their discriminative power, being an appealing addition to tackle SSL tasks.
Novel community data in ecology-properties and prospects.
Florian Hartig
Nerea Abrego
Alex Bush
Jonathan M. Chase
G. Guillera‐Arroita
M. Leibold
Otso T. Ovaskainen
Loïc Pellissier
Maximilian Pichler
Giovanni Poggiato
Sara Si-moussi
Wilfried Thuiller
Duarte S Viana
D. Warton
Damaris Zurell
Douglas W. Yu
Reply to: Model uncertainty obscures major driver of soil carbon
Feng Tao
Benjamin Z. Houlton
Serita D. Frey
Johannes Lehmann
Stefano Manzoni
Yuanyuan Huang
Lifen Jiang
Umakant Mishra
Bruce A. Hungate
Michael W. I. Schmidt
Markus Reichstein
Nuno Carvalhais
Philippe Ciais
Ying-Ping Wang
Bernhard Ahrens
Gustaf Hugelius
Xingjie Lu
Zheng Shi
Kostiantyn Viatkin … (voir 15 de plus)
K. Viatkin
Ronald Vargas
Yusuf Yigini
Christian Omuto
Ashish A. Malik
Guillermo Peralta
Rosa Cuevas-Corona
Luciano E. Di Paolo
Isabel Luotto
Cuijuan Liao
Yi-Shuang Liang
Yixin Liang
Vinisa S. Saynes
Xiaomeng Huang
Yiqi Luo