Publications

Use of Invasive Brain-Computer Interfaces in Pediatric Neurosurgery: Technical and Ethical Considerations
David Bergeron
Christian Iorio-Morin
Nathalie Orr Gaucher
Éric Racine
Alexander G. Weil
Differentially Private Release of Heterogeneous Network for Managing Healthcare Data
Rashid Hussain Khokhar
Farkhund Iqbal
Khalil Al-Hussaeni
Mohammed Hussain
With the increasing adoption of digital health platforms through mobile apps and online services, people have greater flexibility connecting… (voir plus) with medical practitioners, pharmacists, and laboratories and accessing resources to manage their own health-related concerns. Many healthcare institutions are connecting with each other to facilitate the exchange of healthcare data, with the goal of effective healthcare data management. The contents generated over these platforms are often shared with third parties for a variety of purposes. However, sharing healthcare data comes with the potential risk of exposing patients’ sensitive information to privacy threats. In this article, we address the challenge of sharing healthcare data while protecting patients’ privacy. We first model a complex healthcare dataset using a heterogeneous information network that consists of multi-type entities and their relationships. We then propose DiffHetNet, an edge-based differentially private algorithm, to protect the sensitive links of patients from inbound and outbound attacks in the heterogeneous health network. We evaluate the performance of our proposed method in terms of information utility and efficiency on different types of real-life datasets that can be modeled as networks. Experimental results suggest that DiffHetNet generally yields less information loss and is significantly more efficient in terms of runtime in comparison with existing network anonymization methods. Furthermore, DiffHetNet is scalable to large network datasets.
A case–control study on predicting population risk of suicide using health administrative data: a research protocol
JianLi Wang
Fatemeh Gholi Zadeh Kharrat
Jean-François Pelletier
Louis Rochette
Eric Pelletier
Pascale Lévesque
Victoria Massamba
Camille Brousseau-Paradis
Mada Mohammed
Geneviève Gariépy
Alain Lesage
DisKeyword: Tweet Corpora Exploration for Keyword Selection
Sacha Lévy
Homotopic local-global parcellation of the human cerebral cortex from resting-state functional connectivity
Xiaoxuan Yan
Ru Kong
Aihuiping Xue
Qing Yang
Csaba Orban
Lijun An
Avram J. Holmes
Xing Qian
Jianzhong Chen
Xi-Nian Zuo
Juan Helen Zhou
Marielle V Fortier
Ai Peng Tan
Peter Gluckman
Yap Seng Chong
Michael J Meaney
Simon B. Eickhoff
B.T. Thomas Yeo
Commonality in Recommender Systems: Evaluating Recommender Systems to Enhance Cultural Citizenship
Andres Ferraro
Gustavo Ferreira
Georgina Born
Recall, Robustness, and Lexicographic Evaluation
Bhaskar Mitra
Unsupervised Layer-wise Score Aggregation for Textual OOD Detection
Maxime DARRIN
Guillaume Staerman
Eduardo Dadalto Câmara Gomes
Jackie Ck Cheung
Pierre Colombo
Interpret Your Care: Predicting the Evolution of Symptoms for Cancer Patients
Rupali Bhati
Jennifer Jones
Cancer treatment is an arduous process for patients and causes many side-effects during and post-treatment. The treatment can affect almost … (voir plus)all body systems and result in pain, fatigue, sleep disturbances, cognitive impairments, etc. These conditions are often under-diagnosed or under-treated. In this paper, we use patient data to predict the evolution of their symptoms such that treatment-related impairments can be prevented or effects meaningfully ameliorated. The focus of this study is on predicting the pain and tiredness level of a patient post their diagnosis. We implement an interpretable decision tree based model called LightGBM on real-world patient data consisting of 20163 patients. There exists a class imbalance problem in the dataset which we resolve using the oversampling technique of SMOTE. Our empirical results show that the value of the previous level of a symptom is a key indicator for prediction and the weighted average deviation in prediction of pain level is 3.52 and of tiredness level is 2.27.
LAGrad: Statically Optimized Differentiable Programming in MLIR
Mai Jacob Peng
Effects of incoming particle energy and cluster size on the G-value of hydrated electrons.
Alaina Bui
H. Bekerat
Lilian Childress
Jack C Sankey
Jan Seuntjens
MOT: A Multi-Omics Transformer for Multiclass Classification Tumour Types Predictions
Mazid Osseni
Prudencio Tossou
François Laviolette
Jacques Corbeil