Découvrez le dernier rapport d'impact de Mila, qui met en lumière les réalisations exceptionnelles des membres de notre communauté au cours de la dernière année.
Rapport et guide politique GPAI: Vers une réelle égalité en IA
Rejoignez-nous à Mila le 26 novembre pour le lancement du rapport et du guide politique qui présente des recommandations concrètes pour construire des écosystèmes d'IA inclusifs.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Game theoretical analysis of Kidney Exchange Programs
The Strong Lottery Ticket Hypothesis (SLTH) stipulates the existence of a subnetwork within a sufficiently overparameterized (dense) neural … (voir plus)network that -- when initialized randomly and without any training -- achieves the accuracy of a fully trained target network. Recent works by Da Cunha et. al 2022; Burkholz 2022 demonstrate that the SLTH can be extended to translation equivariant networks -- i.e. CNNs -- with the same level of overparametrization as needed for the SLTs in dense networks. However, modern neural networks are capable of incorporating more than just translation symmetry, and developing general equivariant architectures such as rotation and permutation has been a powerful design principle. In this paper, we generalize the SLTH to functions that preserve the action of the group
The Generative Flow Network is a probabilistic framework where an agent learns a stochastic policy for object generation, such that the prob… (voir plus)ability of generating an object is proportional to a given reward function. Its effectiveness has been shown in discovering high-quality and diverse solutions, compared to reward-maximizing reinforcement learning-based methods. Nonetheless, GFlowNets only learn from rewards of the terminal states, which can limit its applicability. Indeed, intermediate rewards play a critical role in learning, for example from intrinsic motivation to provide intermediate feedback even in particularly challenging sparse reward tasks. Inspired by this, we propose Generative Augmented Flow Networks (GAFlowNets), a novel learning framework to incorporate intermediate rewards into GFlowNets. We specify intermediate rewards by intrinsic motivation to tackle the exploration problem in sparse reward environments. GAFlowNets can leverage edge-based and state-based intrinsic rewards in a joint way to improve exploration. Based on extensive experiments on the GridWorld task, we demonstrate the effectiveness and efficiency of GAFlowNet in terms of convergence, performance, and diversity of solutions. We further show that GAFlowNet is scalable to a more complex and large-scale molecule generation domain, where it achieves consistent and significant performance improvement.
This paper builds bridges between two families of probabilistic algorithms: (hierarchical) variational inference (VI), which is typically us… (voir plus)ed to model distributions over continuous spaces, and generative flow networks (GFlowNets), which have been used for distributions over discrete structures such as graphs. We demonstrate that, in certain cases, VI algorithms are equivalent to special cases of GFlowNets in the sense of equality of expected gradients of their learning objectives. We then point out the differences between the two families and show how these differences emerge experimentally. Notably, GFlowNets, which borrow ideas from reinforcement learning, are more amenable than VI to off-policy training without the cost of high gradient variance induced by importance sampling. We argue that this property of GFlowNets can provide advantages for capturing diversity in multimodal target distributions.
There is growing interest in understanding how real brains may approximate gradients and how gradients can be used to train neuromorphic chi… (voir plus)ps. However, neither real brains nor neuromorphic chips can perfectly follow the loss gradient, so parameter updates would necessarily use gradient estimators that have some variance and/or bias. Therefore, there is a need to understand better how variance and bias in gradient estimators impact learning dependent on network and task properties. Here, we show that variance and bias can impair learning on the training data, but some degree of variance and bias in a gradient estimator can be beneficial for generalization. We find that the ideal amount of variance and bias in a gradient estimator are dependent on several properties of the network and task: the size and activity sparsity of the network, the norm of the gradient, and the curvature of the loss landscape. As such, whether considering biologically-plausible learning algorithms or algorithms for training neuromorphic chips, researchers can analyze these properties to determine whether their approximation to gradient descent will be effective for learning given their network and task properties.
Deep learning vision systems are widely deployed across applications where reliability is critical. However, even today's best models can fa… (voir plus)il to recognize an object when its pose, lighting, or background varies. While existing benchmarks surface examples challenging for models, they do not explain why such mistakes arise. To address this need, we introduce ImageNet-X—a set of sixteen human annotations of factors such as pose, background, or lighting the entire ImageNet-1k validation set as well as a random subset of 12k training images. Equipped with ImageNet-X, we investigate 2,200 current recognition models and study the types of mistakes as a function of model’s (1) architecture, e.g. transformer vs. convolutional, (2) learning paradigm, e.g. supervised vs. self-supervised, and (3) training procedures, e.g., data augmentation. Regardless of these choices, we find models have consistent failure modes across ImageNet-X categories. We also find that while data augmentation can improve robustness to certain factors, they induce spill-over effects to other factors. For example, color-jitter augmentation improves robustness to color and brightness, but surprisingly hurts robustness to pose. Together, these insights suggest to advance the robustness of modern vision models, future research should focus on collecting additional data and understanding data augmentation schemes. Along with these insights, we release a toolkit based on ImageNet-X to spur further study into the mistakes image recognition systems make.
Neural Processes (NPs) are popular methods in meta-learning that can estimate predictive uncertainty on target datapoints by conditioning on… (voir plus) a context dataset. Previous state-of-the-art method Transformer Neural Processes (TNPs) achieve strong performance but require quadratic computation with respect to the number of context datapoints, significantly limiting its scalability. Conversely, existing sub-quadratic NP variants perform significantly worse than that of TNPs. Tackling this issue, we propose Latent Bottlenecked Attentive Neural Processes (LBANPs), a new computationally efficient sub-quadratic NP variant, that has a querying computational complexity independent of the number of context datapoints. The model encodes the context dataset into a constant number of latent vectors on which self-attention is performed. When making predictions, the model retrieves higher-order information from the context dataset via multiple cross-attention mechanisms on the latent vectors. We empirically show that LBANPs achieve results competitive with the state-of-the-art on meta-regression, image completion, and contextual multi-armed bandits. We demonstrate that LBANPs can trade-off the computational cost and performance according to the number of latent vectors. Finally, we show LBANPs can scale beyond existing attention-based NP variants to larger dataset settings.
Learning From FM Communications: Toward Accurate, Efficient, All-Terrain Vehicle Localization
X. Chen
Qiao Xiang
L. Kong
Huisan Xu
Xuemei Liu
Vehicle localization service is a fundamental component of intelligent transportation systems. The widely used satellite navigation systems … (voir plus)perform poorly in urban areas because the lines of sight to satellites are blocked by complex terrain characteristics, e.g., buildings, elevated streets and interchanges. In this paper, we design RadioLoc, a novel system achieving accurate, efficient, all-terrain vehicle localization with two key design points. First, RadioLoc harvests the frequency modulation (FM) signal, which has higher availability than satellite signal in complex terrains, as the signal source for localization. Second, RadioLoc integrates modern machine learning techniques into the processing of FM signals to efficiently learn the accurate vehicle localization in all-terrain environments. We validate the feasibility of FM-based vehicle localization and corresponding challenges and practical issues via field tests (e.g., signal distortion, signal inconsistency and limited in- vehicle radio bandwidth), and develop a series of advanced techniques in RadioLoc to address them, including adaptive batching, frequency sweeping, a novel multipath delay spread filter, a reconstructive PCA denoiser and a tailored FM feature extractor. We then develop a generic, modular localization module in RadioLoc, and design different learning-based 3D position identification algorithms for this module. We implement a prototype of RadioLoc and perform extensive field experiments to evaluate its efficiency and efficacy. Results show that (1) RadioLoc achieves a real-time localization latency of less than 100 milliseconds; (2) RadioLoc achieves a worst-case localization accuracy of 99.6% even in an underground parking lot, and (3) the horizontal error of RadioLoc is only one sixth of a dedicated GPS device even when the vehicle is moving at a high-speed (i.e., 80 km/h) in a complex highway scenario.
Vehicle localization service is a fundamental component of intelligent transportation systems. The widely used satellite navigation systems … (voir plus)perform poorly in urban areas because the lines of sight to satellites are blocked by complex terrain characteristics, e.g., buildings, elevated streets and interchanges. In this paper, we design RadioLoc, a novel system achieving accurate, efficient, all-terrain vehicle localization with two key design points. First, RadioLoc harvests the frequency modulation (FM) signal, which has higher availability than satellite signal in complex terrains, as the signal source for localization. Second, RadioLoc integrates modern machine learning techniques into the processing of FM signals to efficiently learn the accurate vehicle localization in all-terrain environments. We validate the feasibility of FM-based vehicle localization and corresponding challenges and practical issues via field tests (e.g., signal distortion, signal inconsistency and limited in- vehicle radio bandwidth), and develop a series of advanced techniques in RadioLoc to address them, including adaptive batching, frequency sweeping, a novel multipath delay spread filter, a reconstructive PCA denoiser and a tailored FM feature extractor. We then develop a generic, modular localization module in RadioLoc, and design different learning-based 3D position identification algorithms for this module. We implement a prototype of RadioLoc and perform extensive field experiments to evaluate its efficiency and efficacy. Results show that (1) RadioLoc achieves a real-time localization latency of less than 100 milliseconds; (2) RadioLoc achieves a worst-case localization accuracy of 99.6% even in an underground parking lot, and (3) the horizontal error of RadioLoc is only one sixth of a dedicated GPS device even when the vehicle is moving at a high-speed (i.e., 80 km/h) in a complex highway scenario.
This paper studies learning on text-attributed graphs (TAGs), where each node is associated with a text description. An ideal solution for s… (voir plus)uch a problem would be integrating both the text and graph structure information with large language models and graph neural networks (GNNs). However, the problem becomes very challenging when graphs are large due to the high computational complexity brought by training large language models and GNNs together. In this paper, we propose an efficient and effective solution to learning on large text-attributed graphs by fusing graph structure and language learning with a variational Expectation-Maximization (EM) framework, called GLEM. Instead of simultaneously training large language models and GNNs on big graphs, GLEM proposes to alternatively update the two modules in the E-step and M-step. Such a procedure allows training the two modules separately while simultaneously allowing the two modules to interact and mutually enhance each other. Extensive experiments on multiple data sets demonstrate the efficiency and effectiveness of the proposed approach.
We consider the task of generating realistic 3D shapes, which is useful for a variety of applications such as automatic scene generation and… (voir plus) physical simulation. Compared to other 3D representations like voxels and point clouds, meshes are more desirable in practice, because (1) they enable easy and arbitrary manipulation of shapes for relighting and simulation, and (2) they can fully leverage the power of modern graphics pipelines which are mostly optimized for meshes. Previous scalable methods for generating meshes typically rely on sub-optimal post-processing, and they tend to produce overly-smooth or noisy surfaces without fine-grained geometric details. To overcome these shortcomings, we take advantage of the graph structure of meshes and use a simple yet very effective generative modeling method to generate 3D meshes. Specifically, we represent meshes with deformable tetrahedral grids, and then train a diffusion model on this direct parameterization. We demonstrate the effectiveness of our model on multiple generative tasks.