Using machine learning to predict student science achievement based on science curriculum type in TIMSS 2019
Yajie Song
Using machine learning to predict student science achievement based on science curriculum type in TIMSS 2019
Yajie Song
A Hybrid CNN-Transformer Approach for Continuous Fine Finger Motion Decoding from sEMG Signals
Zihan Weng
Xiabing Zhang
Yufeng Mou
Chanlin Yi
Fali Li
Peng Xu
This work presents a novel approach that synergistically integrates convolutional neural networks (CNNs) and Transformer models for decoding… (voir plus) continuous fine finger motions from surface electromyography (sEMG) signals. This integration capitalizes on CNNs’ proficiency in extracting rich temporal and spatial features from multichannel sEMG data and the Transformer’s superior capability in recognizing complex patterns and long-range dependencies. A significant advancement in this field is the use of a custom-developed Epidermal Electrode Array Sleeve (EEAS) for capturing high-fidelity sEMG signals, enabling more accurate and reliable signal acquisition than traditional methods. The decoded joint angles could be used in seamless and intuitive human-machine interaction in various applications, such as virtual reality, augmented reality, robotic control, and prosthetic control. Evaluations demonstrate the superior performance of the proposed CNN-Transformer hybrid architecture in decoding continuous fine finger motions, outperforming individual CNN and Transformer models. The synergistic integration of CNNs and Transformers presents a powerful framework for sEMG decoding, offering exciting opportunities for naturalistic and intuitive human-machine interaction applications. Its robustness and efficiency make it an ideal choice for real-world applications, promising to enhance the interface between humans and machines significantly. The implications of this research extend to advancing the understanding of human neuromuscular signals and their application in computing interfaces.
MiNT: Multi-Network Training for Transfer Learning on Temporal Graphs
Kiarash Shamsi
Tran Gia Bao Ngo
Razieh Shirzadkhani
Shenyang Huang
Farimah Poursafaei
Poupak Azad
Baris Coskunuzer
Cuneyt Gurcan Akcora
Phoneme Discretized Saliency Maps for Explainable Detection of AI-Generated Voice
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
Julia Gastinger
Shenyang Huang
Mikhail Galkin
Erfan Loghmani
Ali Parviz
Farimah Poursafaei
Jacob Danovitch
Emanuele Rossi
Ioannis Koutis
Heiner Stuckenschmidt
Multi-relational temporal graphs are powerful tools for modeling real-world data, capturing the evolving and interconnected nature of entiti… (voir plus)es over time. Recently, many novel models are proposed for ML on such graphs intensifying the need for robust evaluation and standardized benchmark datasets. However, the availability of such resources remains scarce and evaluation faces added complexity due to reproducibility issues in experimental protocols. To address these challenges, we introduce Temporal Graph Benchmark 2.0 (TGB 2.0), a novel benchmarking framework tailored for evaluating methods for predicting future links on Temporal Knowledge Graphs and Temporal Heterogeneous Graphs with a focus on large-scale datasets, extending the Temporal Graph Benchmark. TGB 2.0 facilitates comprehensive evaluations by presenting eight novel datasets spanning five domains with up to 53 million edges. TGB 2.0 datasets are significantly larger than existing datasets in terms of number of nodes, edges, or timestamps. In addition, TGB 2.0 provides a reproducible and realistic evaluation pipeline for multi-relational temporal graphs. Through extensive experimentation, we observe that 1) leveraging edge-type information is crucial to obtain high performance, 2) simple heuristic baselines are often competitive with more complex methods, 3) most methods fail to run on our largest datasets, highlighting the need for research on more scalable methods.
Tracing the Ransomware Bloodline: Investigation and Detection of Drifting Virlock Variants
Salwa Razaulla
Claude Fachkha
Amjad Gawanmeh
Christine Markarian
Chadi Assi
Malware, especially ransomware, has dramatically increased in volume and sophistication in recent years. The growing complexity and destruct… (voir plus)ive potential of ransomware demand effective countermeasures. Despite tremendous efforts by the security community to document these threats, reliance on manual analysis makes it challenging to discern unique malware variants from polymorphic variants. Moreover, the easy accessibility of source code of prominent ransomware families in public domains has led to the rise of numerous variants, complicating manual detection and hindering the identification of phylogenetic relationships. This paper introduces a novel approach that narrows the focus to analyze one such prominent ransomware family, Virlock. Using binary code similarity, we systematically reconstruct the lineage of Virlock, tracing its relationships, evolution, and variants. Employing this technique on a dataset of over 1000 Virlock samples submitted to VirusTotal and VirusShare, our analysis unveils intricate relationships within the Virlock ransomware family, offering valuable insights into the tangled relationships of this ransomware.
Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition
Eleni Triantafillou
Peter Kairouz
Fabian Pedregosa
Jamie Hayes
Meghdad Kurmanji
Kairan Zhao
Vincent Dumoulin
Julio C. S. Jacques Junior
Jun Wan
Lisheng Sun-Hosoya
Sergio Escalera
Peter Triantafillou
Isabelle Guyon
We present the findings of the first NeurIPS competition on unlearning, which sought to stimulate the development of novel algorithms and in… (voir plus)itiate discussions on formal and robust evaluation methodologies. The competition was highly successful: nearly 1,200 teams from across the world participated, and a wealth of novel, imaginative solutions with different characteristics were contributed. In this paper, we analyze top solutions and delve into discussions on benchmarking unlearning, which itself is a research problem. The evaluation methodology we developed for the competition measures forgetting quality according to a formal notion of unlearning, while incorporating model utility for a holistic evaluation. We analyze the effectiveness of different instantiations of this evaluation framework vis-a-vis the associated compute cost, and discuss implications for standardizing evaluation. We find that the ranking of leading methods remains stable under several variations of this framework, pointing to avenues for reducing the cost of evaluation. Overall, our findings indicate progress in unlearning, with top-performing competition entries surpassing existing algorithms under our evaluation framework. We analyze trade-offs made by different algorithms and strengths or weaknesses in terms of generalizability to new datasets, paving the way for advancing both benchmarking and algorithm development in this important area.
Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition
Eleni Triantafillou
Peter Kairouz
Fabian Pedregosa
Jamie Hayes
Meghdad Kurmanji
Kairan Zhao
Vincent Dumoulin
Julio C. S. Jacques Junior
Jun Wan
Lisheng Sun-Hosoya
Sergio Escalera
Peter Triantafillou
Isabelle Guyon
We present the findings of the first NeurIPS competition on unlearning, which sought to stimulate the development of novel algorithms and in… (voir plus)itiate discussions on formal and robust evaluation methodologies. The competition was highly successful: nearly 1,200 teams from across the world participated, and a wealth of novel, imaginative solutions with different characteristics were contributed. In this paper, we analyze top solutions and delve into discussions on benchmarking unlearning, which itself is a research problem. The evaluation methodology we developed for the competition measures forgetting quality according to a formal notion of unlearning, while incorporating model utility for a holistic evaluation. We analyze the effectiveness of different instantiations of this evaluation framework vis-a-vis the associated compute cost, and discuss implications for standardizing evaluation. We find that the ranking of leading methods remains stable under several variations of this framework, pointing to avenues for reducing the cost of evaluation. Overall, our findings indicate progress in unlearning, with top-performing competition entries surpassing existing algorithms under our evaluation framework. We analyze trade-offs made by different algorithms and strengths or weaknesses in terms of generalizability to new datasets, paving the way for advancing both benchmarking and algorithm development in this important area.
Exploring validation metrics for offline model-based optimisation with diffusion models
Christopher Beckham
Alexandre Piché
David Vazquez
Turns Out I'm Not Real: Towards Robust Detection of AI-Generated Videos
Qingyuan Liu
Pengyuan Shi
Yun-Yun Tsai
Chengzhi Mao
Junfeng Yang
Grounding Multimodal Large Language Models in Actions
Andrew Szot
Harsh Agrawal
Zsolt Kira
Alexander T Toshev