Publications

Graph topological property recovery with heat and wave dynamics-based features on graphs
Dhananjay Bhaskar
Yanlei Zhang
Charles Xu
Xingzhi Sun
Oluwadamilola Fasina
Maximilian Nickel
Michael Perlmutter
Smita Krishnaswamy
Estimating the population effectiveness of interventions against COVID-19 in France: a modelling study
Iris Ganser
Jane M. Heffernan
M. Prague
Rodolphe Thiébaut
Background Non-pharmaceutical interventions (NPIs) and vaccines have been widely used to manage the COVID-19 pandemic. However, uncertainty … (voir plus)persists regarding the effectiveness of these interventions due to data quality issues, methodological challenges, and differing contextual factors. Accurate estimation of their effects is crucial for future epidemic preparedness. Methods To address this, we developed a population-based mechanistic model that includes the impact of NPIs and vaccines on SARS-CoV-2 transmission and hospitalization rates. Our statistical approach estimated all parameters in one step, accurately propagating uncertainty. We fitted the model to comprehensive epidemiological data in France from March 2020 to October 2021. With the same model, we simulated scenarios of vaccine rollout. Results The first lockdown was the most effective, reducing transmission by 84% (95% confidence interval (CI) 83-85). Subsequent lockdowns had diminished effectiveness (reduction of 74% (69-77) and 11% (9-18), respectively). A 6pm curfew was more effective than one at 8 pm (68% (66-69) vs. 48% (45-49) reduction), while school closures reduced transmission by 15% (12-18). In a scenario without vaccines before November 2021, we predicted 159,000 or 194% (95% prediction interval (PI) 74-424) more deaths and 1,488,000 or 340% (136-689) more hospitalizations. If a vaccine had been available after 100 days, over 71,000 deaths (16,507-204,249) and 384,000 (88,579-1,020,386) hospitalizations could have been averted. Conclusion Our results highlight the substantial impact of NPIs, including lockdowns and curfews, in controlling the COVID-19 pandemic. We also demonstrate the value of the 100 days objective of the CEPI initiative for vaccine availability.
Addressing uncertainty when projecting marine species' distributions under climate change
Sarah C. Davies
Patrick L. Thompson
Catalina Gómez
Jessica Nephin
Anders Knudby
Ashley E. Park
Sarah K. Friesen
Emily M. Rubidge
Sean C. Anderson
Josephine C. Iacarella
Devin A. Lyons
Andrew MacDonald
Andrew McMillan
Eric J. Ward
Amber M. Holdsworth
Neil Swart
Jeff Price
Karen L. Hunter
Artificial Intelligence for Detection of Dementia Using Motion Data: A Scoping Review
Lily Puterman-Salzman
Jory Katz
Howard Bergman
Roland Grad
Vladimir Khanassov
Genevieve Gore
Isabelle Vedel
Machelle Wilchesky
Negar Ghourchian
Background: Dementia is a neurodegenerative disease resulting in the loss of cognitive and psychological functions. Artificial intelligence … (voir plus)(AI) may help in detection and screening of dementia; however, little is known in this area. Objectives: The objective of this study was to identify and evaluate AI interventions for detection of dementia using motion data. Method: The review followed the framework proposed by O’Malley’s and Joanna Briggs Institute methodological guidance for scoping reviews. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist for reporting the results. An information specialist performed a comprehensive search from the date of inception until November 2020, in five bibliographic databases: MEDLINE, EMBASE, Web of Science Core Collection, CINAHL, and IEEE Xplore. We included studies aimed at the deployment and testing or implementation of AI interventions using motion data for the detection of dementia among a diverse population, encompassing varying age, sex, gender, economic backgrounds, and ethnicity, extending to their health care providers across multiple health care settings. Studies were excluded if they focused on Parkinson’s or Huntington’s disease. Two independent reviewers screened the abstracts, titles, and then read the full-texts. Disagreements were resolved by consensus, and if this was not possible, the opinion of a third reviewer was sought. The reference lists of included studies were also screened. Results: After removing duplicates, 2,632 articles were obtained. After title and abstract screening and full-text screening, 839 articles were considered for categorization. The authors categorized the papers into six categories, and data extraction and synthesis was performed on 20 included papers from the motion tracking data category. The included studies assessed cognitive performance (n = 5, 25%); screened dementia and cognitive decline (n = 8, 40%); investigated visual behaviours (n = 4, 20%); and analyzed motor behaviors (n = 3, 15%). Conclusions: We presented evidence of AI systems being employed in the detection of dementia, showcasing the promising potential of motion tracking within this domain. Although some progress has been made in this field recently, there remain notable research gaps that require further exploration and investigation. Future endeavors need to compare AI interventions using motion data with traditional screening methods or other tech-enabled dementia detection mechanisms. Besides, future works should aim at understanding how gender and sex, and ethnic and cultural sensitivity can contribute to refining AI interventions, ensuring they are accessible, equitable, and beneficial across all society.
A Distributed Data-Parallel PyTorch Implementation of the Distributed Shampoo Optimizer for Training Neural Networks At-Scale
Hao-Jun Michael Shi
Tsung-Hsien Lee
Shintaro Iwasaki
Jose Gallego-Posada
Zhijing Li
Kaushik Rangadurai
Dheevatsa Mudigere
Leveraging ChatGPT to Democratize and Decolonize Global Surgery: Large Language Models for Small Healthcare Budgets
Fabio Botelho
Jean Marie Tshimula
Local field potentials in human motor and non-motor brain areas encode the direction of upcoming movements: An intracerebral EEG classification study
Etienne Combrisson
Franck Di Rienzo
Anne-Lise Saive
Marcela Perrone-Bertolotti
Juan LP Soto
Philippe Kahane
Jean-Philippe Lachaux
Aymeric Guillot
Neural Causal Structure Discovery from Interventions
Nan Rosemary Ke
Olexa Bilaniuk
Anirudh Goyal
Stefan Bauer
Bernhard Schölkopf
Michael Curtis Mozer
Recent promising results have generated a surge of interest in continuous optimization methods for causal discovery from observational data.… (voir plus) However, there are theoretical limitations on the identifiability of underlying structures obtained solely from observational data. Interventional data, on the other hand, provides richer information about the underlying data-generating process. Nevertheless, extending and applying methods designed for observational data to include interventions is a challenging problem. To address this issue, we propose a general framework based on neural networks to develop models that incorporate both observational and interventional data. Notably, our method can handle the challenging and realistic scenario where the identity of the intervened upon variable is unknown. We evaluate our proposed approach in the context of graph recovery, both de novo and from a partially-known edge set. Our method achieves strong benchmark results on various structure learning tasks, including structure recovery of synthetic graphs as well as standard graphs from the Bayesian Network Repository.
Let Coarse-Grained Resources Be Shared: Mapping Entire Neural Networks on FPGAs
Tzung-Han Juang
Christof Schlaak
Leveraging World Model Disentanglement in Value-Based Multi-Agent Reinforcement Learning
Zhizun Wang
In this paper, we propose a novel model-based multi-agent reinforcement learning approach named Value Decomposition Framework with Disentang… (voir plus)led World Model to address the challenge of achieving a common goal of multiple agents interacting in the same environment with reduced sample complexity. Due to scalability and non-stationarity problems posed by multi-agent systems, model-free methods rely on a considerable number of samples for training. In contrast, we use a modularized world model, composed of action-conditioned, action-free, and static branches, to unravel the environment dynamics and produce imagined outcomes based on past experience, without sampling directly from the real environment. We employ variational auto-encoders and variational graph auto-encoders to learn the latent representations for the world model, which is merged with a value-based framework to predict the joint action-value function and optimize the overall training objective. We present experimental results in Easy, Hard, and Super-Hard StarCraft II micro-management challenges to demonstrate that our method achieves high sample efficiency and exhibits superior performance in defeating the enemy armies compared to other baselines.
Bridging the Gap Between Target Networks and Functional Regularization
Alexandre Piché
Valentin Thomas
Joseph Marino
Gian Maria Marconi
Rafael Pardinas
Mohammad Emtiyaz Khan
Cardiomyocyte orientation recovery at micrometer scale reveals long‐axis fiber continuum in heart walls
Drisya Dileep
Tabish A Syed
Tyler FW Sloan
Perundurai S Dhandapany
Minhajuddin Sirajuddin