Portrait de Siamak Ravanbakhsh

Siamak Ravanbakhsh

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, McGill University, École d'informatique
Sujets de recherche
Apprentissage de représentations
Apprentissage par renforcement
Apprentissage profond
Apprentissage sur graphes
Causalité
Modèles génératifs
Modèles probabilistes
Modélisation moléculaire
Raisonnement
Réseaux de neurones en graphes
Systèmes dynamiques
Théorie de l'apprentissage automatique
Théorie de l'information

Biographie

Siamak Ravanbakhsh est professeur adjoint à l’École d’informatique de l’Université McGill depuis août 2019. Avant de se joindre à McGill et à Mila – Institut québécois d’intelligence artificielle, il a occupé un poste similaire à l’Université de la Colombie-Britannique. De 2015 à 2017, il a été stagiaire postdoctoral au Département d’apprentissage automatique et à l’Institut de robotique de l’Université Carnegie Mellon, et il a obtenu un doctorat de l’Université de l’Alberta. Il s’intéresse aux problèmes de l’apprentissage de la représentation et de l’inférence dans l’IA.

Ses recherches actuelles portent sur le rôle de la symétrie et de l’invariance dans l’apprentissage profond des représentations.

Étudiants actuels

Doctorat - McGill
Co-superviseur⋅e :
Maîtrise professionnelle - McGill
Doctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Collaborateur·rice alumni - McGill
Postdoctorat - McGill
Maîtrise recherche - McGill
Collaborateur·rice alumni - McGill
Maîtrise professionnelle - McGill

Publications

Physics-Informed Transformer Networks
F. Dos
Santos
Tara Akhound-Sadegh
Physics-informed neural networks (PINNs) have been recognized as a viable alternative to conventional numerical solvers for Partial Differen… (voir plus)tial Equations (PDEs). The main appeal of PINNs is that since they directly enforce the PDE equation, one does not require access to costly ground truth solutions for training the model. However, a key challenge is their limited generalization across varied initial conditions. Addressing this, our study presents a novel Physics-Informed Transformer (PIT) model for learning the solution operator for PDEs. Using the attention mechanism, PIT learns to leverage the relationships between its initial condition and query points, resulting in a significant improvement in generalization. Moreover, in contrast to existing physics-informed networks, our model is invariant to the discretization of the input domain, providing great flexibility in problem specification and training. We validated our proposed method on the 1D Burgers’ and the 2D Heat equations, demonstrating notable improvement over standard PINN models for operator learning with negligible computational overhead.