Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
We present an empirical study in the geometric task of learning interatomic potentials, which shows equivariance matters even more at larger… (voir plus) scales; we show a clear power-law scaling behaviour with respect to data, parameters and compute with ``architecture-dependent exponents''. In particular, we observe that equivariant architectures, which leverage task symmetry, scale better than non-equivariant models. Moreover, among equivariant architectures, higher-order representations translate to better scaling exponents. Our analysis also suggests that for compute-optimal training, the data and model sizes should scale in tandem regardless of the architecture. At a high level, these results suggest that, contrary to common belief, we should not leave it to the model to discover fundamental inductive biases such as symmetry, especially as we scale, because they change the inherent difficulty of the task and its scaling laws.
We present an empirical study in the geometric task of learning interatomic potentials, which shows equivariance matters even more at larger… (voir plus) scales; we show a clear power-law scaling behaviour with respect to data, parameters and compute with ``architecture-dependent exponents''. In particular, we observe that equivariant architectures, which leverage task symmetry, scale better than non-equivariant models. Moreover, among equivariant architectures, higher-order representations translate to better scaling exponents. Our analysis also suggests that for compute-optimal training, the data and model sizes should scale in tandem regardless of the architecture. At a high level, these results suggest that, contrary to common belief, we should not leave it to the model to discover fundamental inductive biases such as symmetry, especially as we scale, because they change the inherent difficulty of the task and its scaling laws.