Portrait de Lune Bellec

Lune Bellec

Membre affilié
Professeur agrégé, Université de Montréal, Département de psychologie
Sujets de recherche
Apprentissage automatique médical
NeuroIA
Neuroimagerie (IRMf)
Neurosciences computationnelles

Biographie

Je suis professeure au département de psychologie de l’Université de Montréal et chercheuse principale du Laboratoire de simulation et d’exploration du cerveau (SIMEXP) à l’Institut universitaire de gériatrie de Montréal (CRIUGM). J’ai récemment rejoint Mila - Institut québécois d’intelligence artificielle en tant que membre affiliée, et je supervise des étudiant·e·s en informatique (neurosciences computationnelles cognitives) au DIRO, Université de Montréal.

Mon principal intérêt de recherche est d’entraîner des réseaux de neurones artificiels afin d’imiter conjointement l’activité cérébrale humaine individuelle et le comportement. Pour atteindre cet objectif, je dirige un effort intensif de collecte de données individuelles en neuroimagerie (IRMf, MEG) dans le cadre du projet Courtois sur la modélisation neuronale (CNeuroMod).

Je suis chercheuse boursière senior du FRQS, membre de l’Alliance québécoise en neurosciences et intelligence artificielle (UNIQUE), responsable du domaine Santé numérique au CRIUGM, co-responsable de la plateforme de gestion des données au CRIUGM et directrice adjointe à l’informatique neurofonctionnelle de l’Unité de neuroimagerie fonctionnelle (UNF) du CRIUGM.

Étudiants actuels

Maîtrise recherche - UdeM
Co-superviseur⋅e :
Doctorat - UdeM
Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

Proceedings of the OHBM Open Science Room 2024
Selma Lugtmeijer
Ju-Chi Yu
Xiangzhen Kong
Janine D. Bijsterbosch
Elizabeth DuPre
Oscar Esteban
Ibrahim Faye
Seok-Jun Hong
Chuan-Peng Hu
Shella Keilholz
Chun-Chia Kung
Hyeong Hun Lee
Daniel Margulies
Cyril Pernet
Franco Pestilli
Jean-Baptiste Poline
Pradeep R. Raamana
Francesco Santini
Won Mok Shim … (voir 30 de plus)
Paul M. Thompson
Chao-Gan Yan
Niall W. Duncan
Nikhil Bhagwat
Peter Fox
Ana Van Gulick
David N. Kennedy
Gorana Pobric
Neda Sadeghi
Nick Souter
Sandeep Panta
Isabelle van der Velpen
Tonya White
Sina Mansour L.
Qing Wang
Povilas Karvelis
Anibal S. Heinsfeld
Yu-Fang Yang
Hong Ji Kim
Nur Shahidatul Nabila Binti Ibrahim
Stefano Moia
Wei Zhang
Jessica Haigh
Rose-Marie Kouwenhoven
Terra Hyun Lee
Hurshitha Vasudevan
Yuping Yang
Subapriya Suppiah
Yi-Ju Lee
Nils Muhlert
Human-AI Alignment of Learning Trajectories in Video Games: a continual RL benchmark proposal
Yann Harel
François Paugam
We propose a design for a continual reinforcement learning (CRL) benchmark called GHAIA, centered on human-AI alignment of learning trajecto… (voir plus)ries in structured video game environments. Using \textit{Super Mario Bros.} as a case study, gameplay is decomposed into short, annotated scenes organized into diverse task sequences based on gameplay patterns and difficulty. Evaluation protocols measure both plasticity and stability, with flexible revisit and pacing schedules. A key innovation is the inclusion of high-resolution human gameplay data collected under controlled conditions, enabling direct comparison of human and agent learning. In addition to adapting classical CRL metrics like forgetting and backward transfer, we introduce semantic transfer metrics capturing learning over groups of scenes sharing similar game patterns. We demonstrate the feasibility of our approach on human and agent data, and discuss key aspects of the first release for community input.
Human-AI Alignment of Learning Trajectories in Video Games: a continual RL benchmark proposal
Yann Harel
François Paugam
We propose a design for a continual reinforcement learning (CRL) benchmark called GHAIA, centered on human-AI alignment of learning trajecto… (voir plus)ries in structured video game environments. Using \textit{Super Mario Bros.} as a case study, gameplay is decomposed into short, annotated scenes organized into diverse task sequences based on gameplay patterns and difficulty. Evaluation protocols measure both plasticity and stability, with flexible revisit and pacing schedules. A key innovation is the inclusion of high-resolution human gameplay data collected under controlled conditions, enabling direct comparison of human and agent learning. In addition to adapting classical CRL metrics like forgetting and backward transfer, we introduce semantic transfer metrics capturing learning over groups of scenes sharing similar game patterns. We demonstrate the feasibility of our approach on human and agent data, and discuss key aspects of the first release for community input.
Alignment of auditory artificial networks with massive individual fMRI brain data leads to generalisable improvements in brain encoding and downstream tasks
Maelle Freteault
Loic Tetrel
Nicolas Farrugia
Artificial neural networks trained in the field of artificial intelligence (AI) have emerged as key tools to model brain processes, sparking… (voir plus) the idea of aligning network representations with brain dynamics to enhance performance on AI tasks. While this concept has gained support in the visual domain, we investigate here the feasibility of creating auditory artificial neural models directly aligned with individual brain activity. This objective raises major computational challenges, as models have to be trained directly with brain data, which is typically collected at a much smaller scale than data used to train AI models. We aimed to answer two key questions: (1) Can brain alignment of auditory models lead to improved brain encoding for novel, previously unseen stimuli? (2) Can brain alignment lead to generalisable representations of auditory signals that are useful for solving a variety of complex auditory tasks? To answer these questions, we relied on two massive datasets: a deep phenotyping dataset from the Courtois neuronal modelling project, where six subjects watched four seasons (36 hours) of the Friends TV series in functional magnetic resonance imaging and the HEAR benchmark, a large battery of downstream auditory tasks. We fine-tuned SoundNet, a small pretrained convolutional neural network with ∼2.5M parameters. Aligning SoundNet with brain data from three seasons of Friends led to substantial improvement in brain encoding in the fourth season, extending beyond auditory and visual cortices. We also observed consistent performance gains on the HEAR benchmark, particularly for tasks with limited training data, where brain-aligned models performed comparably to the best-performing models regardless of size. We finally compared individual and group models, finding that individual models often matched or outperformed group models in both brain encoding and downstream task performance, highlighting the data efficiency of fine-tuning with individual brain data. Our results demonstrate the feasibility of aligning artificial neural network representations with individual brain activity during auditory processing, and suggest that this alignment is particularly beneficial for tasks with limited training data. Future research is needed to establish whether larger models can achieve even better performance and whether the observed gains extend to other tasks, particularly in the context of few shot learning.
Alignment of auditory artificial networks with massive individual fMRI brain data leads to generalizable improvements in brain encoding and downstream tasks
Maelle Freteault
Loic Tetrel
Nicolas Farrugia
Artificial neural networks trained in the field of artificial intelligence (AI) have emerged as key tools to model brain processes, sparking… (voir plus) the idea of aligning network representations with brain dynamics to enhance performance on AI tasks. While this concept has gained support in the visual domain, we investigate here the feasibility of creating auditory artificial neural models directly aligned with individual brain activity. This objective raises major computational challenges, as models have to be trained directly with brain data, which is typically collected at a much smaller scale than data used to train AI models. We aimed to answer two key questions: (1) Can brain alignment of auditory models lead to improved brain encoding for novel, previously unseen stimuli? (2) Can brain alignment lead to generalisable representations of auditory signals that are useful for solving a variety of complex auditory tasks? To answer these questions, we relied on two massive datasets: a deep phenotyping dataset from the Courtois neuronal modelling project, where six subjects watched four seasons (36 hours) of the Friends TV series in functional magnetic resonance imaging and the HEAR benchmark, a large battery of downstream auditory tasks. We fine-tuned SoundNet, a small pretrained convolutional neural network with ∼2.5M parameters. Aligning SoundNet with brain data from three seasons of Friends led to substantial improvement in brain encoding in the fourth season, extending beyond auditory and visual cortices. We also observed consistent performance gains on the HEAR benchmark, particularly for tasks with limited training data, where brain-aligned models performed comparably to the best-performing models regardless of size. We finally compared individual and group models, finding that individual models often matched or outperformed group models in both brain encoding and downstream task performance, highlighting the data efficiency of fine-tuning with individual brain data. Our results demonstrate the feasibility of aligning artificial neural network representations with individual brain activity during auditory processing, and suggest that this alignment is particularly beneficial for tasks with limited training data. Future research is needed to establish whether larger models can achieve even better performance and whether the observed gains extend to other tasks, particularly in the context of few shot learning.
Longitudinal reproducibility of brain and spinal cord quantitative MRI biomarkers
Mathieu Boudreau
Agah Karakuzu
Arnaud Boré
Basile Pinsard
Kiril Zelenkovski
Eva Alonso‐Ortiz
Julie Boyle
Quantitative MRI (qMRI) promises better specificity, accuracy, repeatability, and reproducibility relative to its clinically-used qualitativ… (voir plus)e MRI counterpart. Longitudinal reproducibility is particularly important in qMRI. The goal is to reliably quantify tissue properties that may be assessed in longitudinal clinical studies throughout disease progression or during treatment. In this work, we present the initial data release of the quantitative MRI portion of the Courtois project on neural modelling (CNeuroMod), where the brain and cervical spinal cord of six participants were scanned at regular intervals over the course of several years. This first release includes three years of data collection and up to ten sessions per participant using quantitative MRI imaging protocols (T1, magnetization transfer (MTR, MTsat), and diffusion). In the brain, T1MP2RAGE, FA, MD, and RD all exhibited high longitudinal reproducibility (intraclass correlation coefficient— ICC ≃ 1 and within-subject coefficient of variations— wCV 1%). The spinal cord cross-sectional area (CSA) computed using T2w images and T1MTsat exhibited the best longitudinal reproducibility (ICC ≃ 1 and 0.7 respectively, and wCV 2.4% and 6.9%). Results from this work show the level of longitudinal reproducibility that can be expected from qMRI protocols in the brain and spinal cord in the absence of hardware and software upgrades, and could help in the design of future longitudinal clinical studies.
Longitudinal reproducibility of brain and spinal cord quantitative MRI biomarkers
Mathieu Boudreau
Agah Karakuzu
Arnaud Boré
Basile Pinsard
Kiril Zelenkovski
Eva Alonso‐Ortiz
Julie Boyle
Abstract Quantitative MRI (qMRI) promises better specificity, accuracy, repeatability, and reproducibility relative to its clinically-used q… (voir plus)ualitative MRI counterpart. Longitudinal reproducibility is particularly important in qMRI. The goal is to reliably quantify tissue properties that may be assessed in longitudinal clinical studies throughout disease progression or during treatment. In this work, we present the initial data release of the quantitative MRI portion of the Courtois project on neural modelling (CNeuroMod), where the brain and cervical spinal cord of six participants were scanned at regular intervals over the course of several years. This first release includes 3 years of data collection and up to 10 sessions per participant using quantitative MRI imaging protocols (T1, magnetization transfer (MTR, MTsat), and diffusion). In the brain, T1MP2RAGE, fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) all exhibited high longitudinal reproducibility (intraclass correlation coefficient – ICC ≃ 1 and within-subject coefficient of variations – wCV 1%). The spinal cord cross-sectional area (CSA) computed using T2w images and T1MTsat exhibited the best longitudinal reproducibility (ICC ≃ 1 and 0.7 respectively, and wCV 2.4% and 6.9%). Results from this work show the level of longitudinal reproducibility that can be expected from qMRI protocols in the brain and spinal cord in the absence of hardware and software upgrades, and could help in the design of future longitudinal clinical studies.
Longitudinal reproducibility of brain and spinal cord quantitative MRI biomarkers
Mathieu Boudreau
Agah Karakuzu
Arnaud Boré
Basile Pinsard
Kiril Zelenkovski
Eva Alonso‐Ortiz
Julie Boyle
Abstract Quantitative MRI (qMRI) promises better specificity, accuracy, repeatability, and reproducibility relative to its clinically-used q… (voir plus)ualitative MRI counterpart. Longitudinal reproducibility is particularly important in qMRI. The goal is to reliably quantify tissue properties that may be assessed in longitudinal clinical studies throughout disease progression or during treatment. In this work, we present the initial data release of the quantitative MRI portion of the Courtois project on neural modelling (CNeuroMod), where the brain and cervical spinal cord of six participants were scanned at regular intervals over the course of several years. This first release includes 3 years of data collection and up to 10 sessions per participant using quantitative MRI imaging protocols (T1, magnetization transfer (MTR, MTsat), and diffusion). In the brain, T1MP2RAGE, fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) all exhibited high longitudinal reproducibility (intraclass correlation coefficient – ICC ≃ 1 and within-subject coefficient of variations – wCV 1%). The spinal cord cross-sectional area (CSA) computed using T2w images and T1MTsat exhibited the best longitudinal reproducibility (ICC ≃ 1 and 0.7 respectively, and wCV 2.4% and 6.9%). Results from this work show the level of longitudinal reproducibility that can be expected from qMRI protocols in the brain and spinal cord in the absence of hardware and software upgrades, and could help in the design of future longitudinal clinical studies.
Training Compute-Optimal Vision Transformers for Brain Encoding
Sana Ahmadi
Fraçois Paugam
Tristan Glatard
The optimal training of a vision transformer for brain encoding depends on three factors: model size, data size, and computational resources… (voir plus). This study investigates these three pillars, focusing on the effects of data scaling, model scaling, and high-performance computing on brain encoding results. Using VideoGPT to extract efficient spatiotemporal features from videos and training a Ridge model to predict brain activity based on these features, we conducted benchmark experiments with varying data sizes (10k, 100k, 1M, 6M) and different model configurations of GPT-2, including hidden layer dimensions, number of layers, and number of attention heads. We also evaluated the effects of training models with 32-bit vs 16-bit floating point representations. Our results demonstrate that increasing the hidden layer dimensions significantly improves brain encoding performance, as evidenced by higher Pearson correlation coefficients across all subjects. In contrast, the number of attention heads does not have a significant effect on the encoding results. Additionally, increasing the number of layers shows some improvement in brain encoding correlations, but the trend is not as consistent as that observed with hidden layer dimensions. The data scaling results show that larger training datasets lead to improved brain encoding performance, with the highest Pearson correlation coefficients observed for the largest dataset size (6M). These findings highlight that the effects of data scaling are more significant compared to model scaling in enhancing brain encoding performance. Furthermore, we explored the impact of floating-point precision by comparing 32-bit and 16-bit representations. Training with 16-bit precision yielded the same brain encoding accuracy as 32-bit, while reducing training time by 1.17 times, demonstrating its efficiency for high-performance computing tasks.
Training Compute-Optimal Vision Transformers for Brain Encoding
Sana Ahmadi
Fraçois Paugam
Tristan Glatard
The optimal training of a vision transformer for brain encoding depends on three factors: model size, data size, and computational resources… (voir plus). This study investigates these three pillars, focusing on the effects of data scaling, model scaling, and high-performance computing on brain encoding results. Using VideoGPT to extract efficient spatiotemporal features from videos and training a Ridge model to predict brain activity based on these features, we conducted benchmark experiments with varying data sizes (10k, 100k, 1M, 6M) and different model configurations of GPT-2, including hidden layer dimensions, number of layers, and number of attention heads. We also evaluated the effects of training models with 32-bit vs 16-bit floating point representations. Our results demonstrate that increasing the hidden layer dimensions significantly improves brain encoding performance, as evidenced by higher Pearson correlation coefficients across all subjects. In contrast, the number of attention heads does not have a significant effect on the encoding results. Additionally, increasing the number of layers shows some improvement in brain encoding correlations, but the trend is not as consistent as that observed with hidden layer dimensions. The data scaling results show that larger training datasets lead to improved brain encoding performance, with the highest Pearson correlation coefficients observed for the largest dataset size (6M). These findings highlight that the effects of data scaling are more significant compared to model scaling in enhancing brain encoding performance. Furthermore, we explored the impact of floating-point precision by comparing 32-bit and 16-bit representations. Training with 16-bit precision yielded the same brain encoding accuracy as 32-bit, while reducing training time by 1.17 times, demonstrating its efficiency for high-performance computing tasks.
Noise covariance estimation in multi-task high-dimensional linear models
Kai Tan
Gabriel Romon
A benchmark of individual auto-regressive models in a massive fMRI dataset
Fraçois Paugam
Basile Pinsard
Pierre Bellec
Dense functional magnetic resonance imaging datasets open new avenues to create auto-regressive models of brain activity. Individual idiosyn… (voir plus)crasies are obscured by group models, but can be captured by purely individual models given sufficient amounts of training data. In this study, we compared several deep and shallow individual models on the temporal auto-regression of BOLD time series recorded during a natural video watching task. The best performing models were then analyzed in terms of their data requirements and scaling, subject specificity and the space-time structure of their predicted dynamics. We found the Chebnets, a type of graph convolutional neural network, to be best suited for temporal BOLD auto-regression, closely followed by linear models. Chebnets demonstrated an increase in performance with increasing amounts of data, with no complete saturation at 9 h of training data. Good generalization to other kinds of video stimuli and to resting state data marked the Chebnets’ ability to capture intrinsic brain dynamics rather than only stimulus-specific autocorrelation patterns. Significant subject specificity was found at short prediction time lags. The Chebnets were found to capture lower frequencies at longer prediction time lags, and the spatial correlations in predicted dynamics were found to match traditional functional connectivity networks. Overall, these results demonstrate that large individual fMRI datasets can be used to efficiently train purely individual auto-regressive models of brain activity, and that massive amounts of individual data are required to do so. The excellent performance of the Chebnets likely reflects their ability to combine spatial and temporal interactions on large time scales at a low complexity cost. The non-linearities of the models did not appear as a key advantage. In fact, surprisingly, linear versions of the Chebnets appeared to outperform the original nonlinear ones. Individual temporal auto-regressive models have the potential to improve the predictability of the BOLD signal. This study is based on a massive, publicly-available dataset, which can serve for future benchmarks of individual auto-regressive modeling.