Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relation les décideur·euse·s avec des chercheur·euse·s de pointe en IA grâce à une combinaison de consultations ouvertes et d'exercices de test de faisabilité des politiques. La prochaine session aura lieu les 9 et 10 octobre.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
We propose a design for a continual reinforcement learning (CRL) benchmark called GHAIA, centered on human-AI alignment of learning trajecto… (voir plus)ries in structured video game environments. Using \textit{Super Mario Bros.} as a case study, gameplay is decomposed into short, annotated scenes organized into diverse task sequences based on gameplay patterns and difficulty. Evaluation protocols measure both plasticity and stability, with flexible revisit and pacing schedules. A key innovation is the inclusion of high-resolution human gameplay data collected under controlled conditions, enabling direct comparison of human and agent learning. In addition to adapting classical CRL metrics like forgetting and backward transfer, we introduce semantic transfer metrics capturing learning over groups of scenes sharing similar game patterns. We demonstrate the feasibility of our approach on human and agent data, and discuss key aspects of the first release for community input.
We propose a design for a continual reinforcement learning (CRL) benchmark called GHAIA, centered on human-AI alignment of learning trajecto… (voir plus)ries in structured video game environments. Using \textit{Super Mario Bros.} as a case study, gameplay is decomposed into short, annotated scenes organized into diverse task sequences based on gameplay patterns and difficulty. Evaluation protocols measure both plasticity and stability, with flexible revisit and pacing schedules. A key innovation is the inclusion of high-resolution human gameplay data collected under controlled conditions, enabling direct comparison of human and agent learning. In addition to adapting classical CRL metrics like forgetting and backward transfer, we introduce semantic transfer metrics capturing learning over groups of scenes sharing similar game patterns. We demonstrate the feasibility of our approach on human and agent data, and discuss key aspects of the first release for community input.