Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
We propose a design for a continual reinforcement learning (CRL) benchmark called GHAIA, centered on human-AI alignment of learning trajecto… (see more)ries in structured video game environments. Using \textit{Super Mario Bros.} as a case study, gameplay is decomposed into short, annotated scenes organized into diverse task sequences based on gameplay patterns and difficulty. Evaluation protocols measure both plasticity and stability, with flexible revisit and pacing schedules. A key innovation is the inclusion of high-resolution human gameplay data collected under controlled conditions, enabling direct comparison of human and agent learning. In addition to adapting classical CRL metrics like forgetting and backward transfer, we introduce semantic transfer metrics capturing learning over groups of scenes sharing similar game patterns. We demonstrate the feasibility of our approach on human and agent data, and discuss key aspects of the first release for community input.
We propose a design for a continual reinforcement learning (CRL) benchmark called GHAIA, centered on human-AI alignment of learning trajecto… (see more)ries in structured video game environments. Using \textit{Super Mario Bros.} as a case study, gameplay is decomposed into short, annotated scenes organized into diverse task sequences based on gameplay patterns and difficulty. Evaluation protocols measure both plasticity and stability, with flexible revisit and pacing schedules. A key innovation is the inclusion of high-resolution human gameplay data collected under controlled conditions, enabling direct comparison of human and agent learning. In addition to adapting classical CRL metrics like forgetting and backward transfer, we introduce semantic transfer metrics capturing learning over groups of scenes sharing similar game patterns. We demonstrate the feasibility of our approach on human and agent data, and discuss key aspects of the first release for community input.