A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
We propose a design for a continual reinforcement learning (CRL) benchmark called GHAIA, centered on human-AI alignment of learning trajecto… (see more)ries in structured video game environments. Using \textit{Super Mario Bros.} as a case study, gameplay is decomposed into short, annotated scenes organized into diverse task sequences based on gameplay patterns and difficulty. Evaluation protocols measure both plasticity and stability, with flexible revisit and pacing schedules. A key innovation is the inclusion of high-resolution human gameplay data collected under controlled conditions, enabling direct comparison of human and agent learning. In addition to adapting classical CRL metrics like forgetting and backward transfer, we introduce semantic transfer metrics capturing learning over groups of scenes sharing similar game patterns. We demonstrate the feasibility of our approach on human and agent data, and discuss key aspects of the first release for community input.
We propose a design for a continual reinforcement learning (CRL) benchmark called GHAIA, centered on human-AI alignment of learning trajecto… (see more)ries in structured video game environments. Using \textit{Super Mario Bros.} as a case study, gameplay is decomposed into short, annotated scenes organized into diverse task sequences based on gameplay patterns and difficulty. Evaluation protocols measure both plasticity and stability, with flexible revisit and pacing schedules. A key innovation is the inclusion of high-resolution human gameplay data collected under controlled conditions, enabling direct comparison of human and agent learning. In addition to adapting classical CRL metrics like forgetting and backward transfer, we introduce semantic transfer metrics capturing learning over groups of scenes sharing similar game patterns. We demonstrate the feasibility of our approach on human and agent data, and discuss key aspects of the first release for community input.