Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Collaborating Alumni
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate
Independent visiting researcher - Technical University of Munich
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating researcher
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

Variational Bi-LSTMs
Samira Shabanian
Devansh Arpit
Adam Trischler
Variational Bi-LSTMs
Samira Shabanian
Devansh Arpit
Adam Trischler
Recurrent neural networks like long short-term memory (LSTM) are important architectures for sequential prediction tasks. LSTMs (and RNNs in… (see more) general) model sequences along the forward time direction. Bidirectional LSTMs (Bi-LSTMs), which model sequences along both forward and backward directions, generally perform better at such tasks because they capture a richer representation of the data. In the training of Bi-LSTMs, the forward and backward paths are learned independently. We propose a variant of the Bi-LSTM architecture, which we call Variational Bi-LSTM, that creates a dependence between the two paths (during training, but which may be omitted during inference). Our model acts as a regularizer and encourages the two networks to inform each other in making their respective predictions using distinct information. We perform ablation studies to better understand the different components of our model and evaluate the method on various benchmarks, showing state-of-the-art performance.
ACtuAL: Actor-Critic Under Adversarial Learning
Anirudh Goyal
Nan Rosemary Ke
Alex Lamb
Generative Adversarial Networks (GANs) are a powerful framework for deep generative modeling. Posed as a two-player minimax problem, GANs ar… (see more)e typically trained end-to-end on real-valued data and can be used to train a generator of high-dimensional and realistic images. However, a major limitation of GANs is that training relies on passing gradients from the discriminator through the generator via back-propagation. This makes it fundamentally difficult to train GANs with discrete data, as generation in this case typically involves a non-differentiable function. These difficulties extend to the reinforcement learning setting when the action space is composed of discrete decisions. We address these issues by reframing the GAN framework so that the generator is no longer trained using gradients through the discriminator, but is instead trained using a learned critic in the actor-critic framework with a Temporal Difference (TD) objective. This is a natural fit for sequence modeling and we use it to achieve improvements on language modeling tasks over the standard Teacher-Forcing methods.
Three Factors Influencing Minima in SGD
Stanisław Jastrzębski
Zac Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Amos Storkey
We study the statistical properties of the endpoint of stochastic gradient descent (SGD). We approximate SGD as a stochastic differential eq… (see more)uation (SDE) and consider its Boltzmann Gibbs equilibrium distribution under the assumption of isotropic variance in loss gradients.. Through this analysis, we find that three factors – learning rate, batch size and the variance of the loss gradients – control the trade-off between the depth and width of the minima found by SGD, with wider minima favoured by a higher ratio of learning rate to batch size. In the equilibrium distribution only the ratio of learning rate to batch size appears, implying that it’s invariant under a simultaneous rescaling of each by the same amount. We experimentally show how learning rate and batch size affect SGD from two perspectives: the endpoint of SGD and the dynamics that lead up to it. For the endpoint, the experiments suggest the endpoint of SGD is similar under simultaneous rescaling of batch size and learning rate, and also that a higher ratio leads to flatter minima, both findings are consistent with our theoretical analysis. We note experimentally that the dynamics also seem to be similar under the same rescaling of learning rate and batch size, which we explore showing that one can exchange batch size and learning rate in a cyclical learning rate schedule. Next, we illustrate how noise affects memorization, showing that high noise levels lead to better generalization. Finally, we find experimentally that the similarity under simultaneous rescaling of learning rate and batch size breaks down if the learning rate gets too large or the batch size gets too small.
Sparse Attentive Backtracking: Long-Range Credit Assignment in Recurrent Networks
Nan Rosemary Ke
Anirudh Goyal
Olexa Bilaniuk
Jonathan Binas
A major drawback of backpropagation through time (BPTT) is the difficulty of learning long-term dependencies, coming from having to propagat… (see more)e credit information backwards through every single step of the forward computation. This makes BPTT both computationally impractical and biologically implausible. For this reason, full backpropagation through time is rarely used on long sequences, and truncated backpropagation through time is used as a heuristic. However, this usually leads to biased estimates of the gradient in which longer term dependencies are ignored. Addressing this issue, we propose an alternative algorithm, Sparse Attentive Backtracking, which might also be related to principles used by brains to learn long-term dependencies. Sparse Attentive Backtracking learns an attention mechanism over the hidden states of the past and selectively backpropagates through paths with high attention weights. This allows the model to learn long term dependencies while only backtracking for a small number of time steps, not just from the recent past but also from attended relevant past states.
Fraternal Dropout
Konrad Żołna
Devansh Arpit
Dendi Suhubdy
Graph Attention Networks
Petar Veličković
Guillem Cucurull
Arantxa Casanova
Pietro Lio
Graph Attention Networks
Petar Veličković
Guillem Cucurull
Arantxa Casanova
Pietro Lio
Learning Independent Features with Adversarial Nets for Non-linear ICA
Philemon Brakel
Reliable measures of statistical dependence could potentially be useful tools for learning independent features and performing tasks like so… (see more)urce separation using Independent Component Analysis (ICA). Unfortunately, many of such measures, like the mutual information, are hard to estimate and optimize directly. We propose to learn independent features with adversarial objectives (Goodfellow et al. 2014, Arjovsky et al. 2017) which optimize such measures implicitly. These objectives compare samples from the joint distribution and the product of the marginals without the need to compute any probability densities. We also propose two methods for obtaining samples from the product of the marginals using either a simple resampling trick or a separate parametric distribution. Our experiments show that this strategy can easily be applied to different types of model architectures and solve both linear and non-linear ICA problems.
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanisław Jastrzębski
Nicolas Ballas
Maxinder S. Kanwal
Asja Fischer
We examine the role of memorization in deep learning, drawing connections to capacity, generalization, and adversarial robustness. While dee… (see more)p networks are capable of memorizing noise data, our results suggest that they tend to prioritize learning simple patterns first. In our experiments, we expose qualitative differences in gradient-based optimization of deep neural networks (DNNs) on noise vs. real data. We also demonstrate that for appropriately tuned explicit regularization (e.g., dropout) we can degrade DNN training performance on noise datasets without compromising generalization on real data. Our analysis suggests that the notions of effective capacity which are dataset independent are unlikely to explain the generalization performance of deep networks when trained with gradient based methods because training data itself plays an important role in determining the degree of memorization.
Deep Complex Networks
Chiheb Trabelsi
Olexa Bilaniuk
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri
Deep Complex Networks
Chiheb Trabelsi
Olexa Bilaniuk
Dmitriy Serdyuk
Sandeep Subramanian
Joao Felipe Santos
Soroush Mehri