Portrait of Yoshua Bengio

Yoshua Bengio

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Université de Montréal, Department of Computer Science and Operations Research Department
Founder and Scientific Advisor, Leadership Team
Research Topics
Causality
Computational Neuroscience
Deep Learning
Generative Models
Graph Neural Networks
Machine Learning Theory
Medical Machine Learning
Molecular Modeling
Natural Language Processing
Probabilistic Models
Reasoning
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

*For media requests, please write to medias@mila.quebec.

For more information please contact Marie-Josée Beauchamp, Administrative Assistant at marie-josee.beauchamp@mila.quebec.

Yoshua Bengio is recognized worldwide as a leading expert in AI. He is most known for his pioneering work in deep learning, which earned him the 2018 A.M. Turing Award, “the Nobel Prize of computing,” with Geoffrey Hinton and Yann LeCun.

Bengio is a full professor at Université de Montréal, and the founder and scientific advisor of Mila – Quebec Artificial Intelligence Institute. He is also a senior fellow at CIFAR and co-directs its Learning in Machines & Brains program, serves as special advisor and founding scientific director of IVADO, and holds a Canada CIFAR AI Chair.

In 2019, Bengio was awarded the prestigious Killam Prize and in 2022, he was the most cited computer scientist in the world by h-index. He is a Fellow of the Royal Society of London, Fellow of the Royal Society of Canada, Knight of the Legion of Honor of France and Officer of the Order of Canada. In 2023, he was appointed to the UN’s Scientific Advisory Board for Independent Advice on Breakthroughs in Science and Technology.

Concerned about the social impact of AI, Bengio helped draft the Montréal Declaration for the Responsible Development of Artificial Intelligence and continues to raise awareness about the importance of mitigating the potentially catastrophic risks associated with future AI systems.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Principal supervisor :
PhD - Université de Montréal
Independent visiting researcher - KAIST
Independent visiting researcher
Co-supervisor :
PhD - Université de Montréal
Collaborating researcher - N/A
Principal supervisor :
PhD - Université de Montréal
Collaborating researcher - KAIST
PhD - Université de Montréal
PhD - Université de Montréal
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Collaborating Alumni - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Principal supervisor :
Collaborating Alumni
PhD - Université de Montréal
Collaborating Alumni - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Principal supervisor :
Independent visiting researcher - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Ying Wu Coll of Computing
PhD - University of Waterloo
Principal supervisor :
Collaborating Alumni - Max-Planck-Institute for Intelligent Systems
Research Intern - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Independent visiting researcher - Université de Montréal
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Postdoctorate
Independent visiting researcher - Technical University of Munich
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - McGill University
Principal supervisor :

Publications

Self-Evolving Curriculum for LLM Reasoning
Minsu Kim
Alexandre Piché
Nicolas Gontier
Ehsan Kamalloo
Structure-Aligned Protein Language Model
Can Chen
David Heurtel-Depeiges
Robert M. Vernon
Christopher J. Langmead
Towards a Formal Theory of Representational Compositionality
Compositionality is believed to be fundamental to intelligence. In humans, it underlies the structure of thought and language. In AI, it ena… (see more)bles a powerful form of out-of-distribution generalization, in which a model systematically adapts to novel combinations of known concepts. However, while we have strong intuitions about what compositionality is, we lack satisfying formal definitions for it. Here, we propose such a definition called representational compositionality that is conceptually simple, quantitative, and grounded in algorithmic information theory. Intuitively, representational compositionality states that a compositional representation is both expressive and describable as a simple function of parts. We validate our definition on both real and synthetic data, and show how it unifies disparate intuitions from across the literature in both AI and cognitive science. We hope that our definition can inspire the design of novel, theoretically-driven models that better capture the mechanisms of compositional thought. We make our code available at https://github.com/EricElmoznino/complexity_compositionality.
Open Problems in Technical AI Governance
Anka Reuel
Benjamin Bucknall
Stephen Casper
Timothy Fist
Lisa Soder
Onni Aarne
Lewis Hammond
Lujain Ibrahim
Peter Wills
Markus Anderljung
Ben Garfinkel
Lennart Heim
Andrew Trask
Gabriel Mukobi
Rylan Schaeffer
Mauricio Baker
Sara Hooker
Irene Solaiman
Sasha Luccioni … (see 14 more)
Alexandra Luccioni
Nitarshan Rajkumar
Nicolas Moës
Jeffrey Ladish
David Bau
Paul Bricman
Neel Guha
Jessica Newman
Tobin South
Alex Pentland
Sanmi Koyejo
Mykel Kochenderfer
Robert Trager
AI progress is creating a growing range of risks and opportunities, but it is often unclear how they should be navigated. In many cases, the… (see more) barriers and uncertainties faced are at least partly technical. Technical AI governance, referring to technical analysis and tools for supporting the effective governance of AI, seeks to address such challenges. It can help to (a) identify areas where intervention is needed, (b) identify and assess the efficacy of potential governance actions, and (c) enhance governance options by designing mechanisms for enforcement, incentivization, or compliance. In this paper, we explain what technical AI governance is, why it is important, and present a taxonomy and incomplete catalog of its open problems. This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery
Mélisande Teng
Etienne Lalibert'e
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery
Mélisande Teng
Etienne Lalibert'e
Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion
Chang Chen
Hany Hamed
Doojin Baek
Taegu Kang
Sungjin Ahn
Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion
Chang Chen
Hany Hamed
Doojin Baek
Taegu Kang
Sungjin Ahn
A scalable gene network model of regulatory dynamics in single cells
Joseph D Viviano
Alejandro Tejada-Lapuerta
Weixu Wang
Fabian J. Theis
A scalable gene network model of regulatory dynamics in single cells
Joseph D Viviano
Alejandro Tejada-Lapuerta
Weixu Wang
Fabian J. Theis
Offline Model-Based Optimization: Comprehensive Review
Minsu Kim
Jiayao Gu
Zixuan Liu
Can Chen
Offline Model-Based Optimization: Comprehensive Review
Minsu Kim
Jiayao Gu
Zixuan Liu
Can Chen