Portrait of Marta Skreta

Marta Skreta

Postdoctorate - Université de Montréal
Supervisor
Research Topics
AI for Science
Generative Models
Molecular Modeling

Publications

Discrete Feynman-Kac Correctors
The performance of Large Language Models (LLMs) directly depends on the size of the context that the model was trained on. Despite significa… (see more)nt progress in increasing the context size of the current models, some applications remain bottlenecked by the number of processed tokens at inference time. A particular mathematical problem LLMs can be used for is inferring parameters in a statistical model, given data-points as input. Here we make a case demonstrating that discrete diffusion models offer a promising avenue for scaling such parameter prediction tasks, by combining the outputs of the same model evaluated on different parts of the training data. We propose Discrete Fenyman-Kac Correctors --- a framework that allows for controlling the generated distribution of discrete masked diffusion models at inference time. We derive Sequential Monte Carlo (SMC) algorithms that, given a trained discrete diffusion model, sample from its annealed distribution or the product of distributions with different conditions. Notably, our framework does not require any training, finetuning and external reward functions. Finally, we apply our framework to amortized linear regression using LLaDA and demonstrate that it drastically outperforms the standard inference procedure in terms of accuracy and adherence to prompt format.
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts
Viktor Ohanesian
Roberto Bondesan
Alan Aspuru-Guzik
Arnaud Doucet
Rob Brekelmans
Alexander Tong
While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling infere… (see more)nce-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional `corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts
Viktor Ohanesian
Roberto Bondesan
Alan Aspuru-Guzik
Arnaud Doucet
Rob Brekelmans
Alexander Tong
While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling infere… (see more)nce-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional 'corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts
Viktor Ohanesian
Roberto Bondesan
Alan Aspuru-Guzik
Arnaud Doucet
Rob Brekelmans
Alexander Tong
While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling infere… (see more)nce-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional 'corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.
The Superposition of Diffusion Models Using the Itô Density Estimator
Lazar Atanackovic
Alexander Tong
The Cambrian explosion of easily accessible pre-trained diffusion models suggests a demand for methods that combine multiple different pre-t… (see more)rained diffusion models without incurring the significant computational burden of re-training a larger combined model. In this paper, we cast the problem of combining multiple pre-trained diffusion models at the generation stage under a novel proposed framework termed superposition. Theoretically, we derive superposition from rigorous first principles stemming from the celebrated continuity equation and design two novel algorithms tailor-made for combining diffusion models in SuperDiff. SuperDiff leverages a new scalable It\^o density estimator for the log likelihood of the diffusion SDE which incurs no additional overhead compared to the well-known Hutchinson's estimator needed for divergence calculations. We demonstrate that SuperDiff is scalable to large pre-trained diffusion models as superposition is performed solely through composition during inference, and also enjoys painless implementation as it combines different pre-trained vector fields through an automated re-weighting scheme. Notably, we show that SuperDiff is efficient during inference time, and mimics traditional composition operators such as the logical OR and the logical AND. We empirically demonstrate the utility of using SuperDiff for generating more diverse images on CIFAR-10, more faithful prompt conditioned image editing using Stable Diffusion, as well as improved conditional molecule generation and unconditional de novo structure design of proteins. https://github.com/necludov/super-diffusion
The Superposition of Diffusion Models Using the Itô Density Estimator
Lazar Atanackovic
Alexander Tong
The Cambrian explosion of easily accessible pre-trained diffusion models suggests a demand for methods that combine multiple different pre-t… (see more)rained diffusion models without incurring the significant computational burden of re-training a larger combined model. In this paper, we cast the problem of combining multiple pre-trained diffusion models at the generation stage under a novel proposed framework termed superposition. Theoretically, we derive superposition from rigorous first principles stemming from the celebrated continuity equation and design two novel algorithms tailor-made for combining diffusion models in SuperDiff. SuperDiff leverages a new scalable It\^o density estimator for the log likelihood of the diffusion SDE which incurs no additional overhead compared to the well-known Hutchinson's estimator needed for divergence calculations. We demonstrate that SuperDiff is scalable to large pre-trained diffusion models as superposition is performed solely through composition during inference, and also enjoys painless implementation as it combines different pre-trained vector fields through an automated re-weighting scheme. Notably, we show that SuperDiff is efficient during inference time, and mimics traditional composition operators such as the logical OR and the logical AND. We empirically demonstrate the utility of using SuperDiff for generating more diverse images on CIFAR-10, more faithful prompt conditioned image editing using Stable Diffusion, as well as improved conditional molecule generation and unconditional de novo structure design of proteins. https://github.com/necludov/super-diffusion
Efficient Evolutionary Search Over Chemical Space with Large Language Models
Haorui Wang
Cher Tian Ser
Wenhao Gao
Lingkai Kong
Felix Streith-Kalthoff
Chenru Duan
Yuchen Zhuang
Yue Yu
Yanqiao Zhu 0001
Yuanqi Du
Alan Aspuru-Guzik
Chao Zhang
Molecular discovery, when formulated as an optimization problem, presents significant computational challenges because optimization objectiv… (see more)es can be non-differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box objectives in molecular discovery, traverse chemical space by performing random mutations and crossovers, leading to a large number of expensive objective evaluations. In this work, we ameliorate this shortcoming by incorporating chemistry-aware Large Language Models (LLMs) into EAs. Namely, we redesign crossover and mutation operations in EAs using LLMs trained on large corpora of chemical information. We perform extensive empirical studies on both commercial and open-source models on multiple tasks involving property optimization, molecular rediscovery, and structure-based drug design, demonstrating that the joint usage of LLMs with EAs yields superior performance over all baseline models across single- and multi-objective settings. We demonstrate that our algorithm improves both the quality of the final solution and convergence speed, thereby reducing the number of required objective evaluations. Our code is available at http://github.com/zoom-wang112358/MOLLEO
Efficient Evolutionary Search Over Chemical Space with Large Language Models
Haorui Wang
Cher Tian Ser
Wenhao Gao
Lingkai Kong
Felix Streith-Kalthoff
Chenru Duan
Yuchen Zhuang
Yue Yu
Yanqiao Zhu 0001
Yuanqi Du
Alan Aspuru-Guzik
Chao Zhang
Molecular discovery, when formulated as an optimization problem, presents significant computational challenges because optimization objectiv… (see more)es can be non-differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box objectives in molecular discovery, traverse chemical space by performing random mutations and crossovers, leading to a large number of expensive objective evaluations. In this work, we ameliorate this shortcoming by incorporating chemistry-aware Large Language Models (LLMs) into EAs. Namely, we redesign crossover and mutation operations in EAs using LLMs trained on large corpora of chemical information. We perform extensive empirical studies on both commercial and open-source models on multiple tasks involving property optimization, molecular rediscovery, and structure-based drug design, demonstrating that the joint usage of LLMs with EAs yields superior performance over all baseline models across single- and multi-objective settings. We demonstrate that our algorithm improves both the quality of the final solution and convergence speed, thereby reducing the number of required objective evaluations. Our code is available at http://github.com/zoom-wang112358/MOLLEO