Portrait of Doina Precup

Doina Precup

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, McGill University, School of Computer Science
Research Team Leader, Google DeepMind
Research Topics
Medical Machine Learning
Molecular Modeling
Probabilistic Models
Reasoning
Reinforcement Learning

Biography

Doina Precup combines teaching at McGill University with fundamental research on reinforcement learning, in particular AI applications in areas of significant social impact, such as health care. She is interested in machine decision-making in situations where uncertainty is high.

In addition to heading the Montreal office of Google DeepMind, Precup is a Senior Fellow of the Canadian Institute for Advanced Research and a Fellow of the Association for the Advancement of Artificial Intelligence.

Her areas of speciality are artificial intelligence, machine learning, reinforcement learning, reasoning and planning under uncertainty, and applications.

Current Students

PhD - McGill University
PhD - McGill University
PhD - McGill University
Co-supervisor :
PhD - McGill University
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Principal supervisor :
Master's Research - McGill University
Principal supervisor :
Research Intern - McGill University
Master's Research - McGill University
PhD - McGill University
PhD - McGill University
Principal supervisor :
PhD - McGill University
Principal supervisor :
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
Master's Research - McGill University
PhD - McGill University
PhD - McGill University
Master's Research - Université de Montréal
Principal supervisor :
PhD - McGill University
Postdoctorate - McGill University
Master's Research - McGill University
Collaborating Alumni - McGill University
PhD - McGill University
PhD - McGill University
Principal supervisor :
PhD - McGill University
Master's Research - McGill University
Principal supervisor :
Master's Research - McGill University
Collaborating researcher - McGill University
PhD - Université de Montréal
Co-supervisor :
PhD - McGill University
PhD - McGill University
Co-supervisor :
PhD - McGill University
Principal supervisor :
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
PhD - McGill University
Co-supervisor :
Research Intern - McGill University
Research Intern - McGill University
Undergraduate - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
Co-supervisor :

Publications

Representation of Reinforcement Learning Policies in Reproducing Kernel Hilbert Spaces.
We propose a general framework for policy representation for reinforcement learning tasks. This framework involves finding a low-dimensional… (see more) embedding of the policy on a reproducing kernel Hilbert space (RKHS). The usage of RKHS based methods allows us to derive strong theoretical guarantees on the expected return of the reconstructed policy. Such guarantees are typically lacking in black-box models, but are very desirable in tasks requiring stability. We conduct several experiments on classic RL domains. The results confirm that the policies can be robustly embedded in a low-dimensional space while the embedded policy incurs almost no decrease in return.
A Distributional Analysis of Sampling-Based Reinforcement Learning Algorithms
Efficient Planning under Partial Observability with Unnormalized Q Functions and Spectral Learning
Learning and planning in partially-observable domains is one of the most difficult problems in reinforcement learning. Traditional methods c… (see more)onsider these two problems as independent, resulting in a classical two-stage paradigm: first learn the environment dynamics and then plan accordingly. This approach, however, disconnects the two problems and can consequently lead to algorithms that are sample inefficient and time consuming. In this paper, we propose a novel algorithm that combines learning and planning together. Our algorithm is closely related to the spectral learning algorithm for predicitive state representations and offers appealing theoretical guarantees and time complexity. We empirically show on two domains that our approach is more sample and time efficient compared to classical methods.
Improving Pathological Structure Segmentation via Transfer Learning Across Diseases
Barleen Kaur
Paul Lemaitre
Raghav Mehta
Nazanin Mohammadi Sepahvand
Douglas Arnold
Avoidance Learning Using Observational Reinforcement Learning
David Venuto
Léonard Boussioux
Junhao Wang
Rola Dali
Jhelum Chakravorty
Imitation learning seeks to learn an expert policy from sampled demonstrations. However, in the real world, it is often difficult to find a … (see more)perfect expert and avoiding dangerous behaviors becomes relevant for safety reasons. We present the idea of \textit{learning to avoid}, an objective opposite to imitation learning in some sense, where an agent learns to avoid a demonstrator policy given an environment. We define avoidance learning as the process of optimizing the agent's reward while avoiding dangerous behaviors given by a demonstrator. In this work we develop a framework of avoidance learning by defining a suitable objective function for these problems which involves the \emph{distance} of state occupancy distributions of the expert and demonstrator policies. We use density estimates for state occupancy measures and use the aforementioned distance as the reward bonus for avoiding the demonstrator. We validate our theory with experiments using a wide range of partially observable environments. Experimental results show that we are able to improve sample efficiency during training compared to state of the art policy optimization and safety methods.
Combined Reinforcement Learning via Abstract Representations
Vincent Francois-Lavet
In the quest for efficient and robust reinforcement learning methods, both model-free and model-based approaches offer advantages. In this p… (see more)aper we propose a new way of explicitly bridging both approaches via a shared low-dimensional learned encoding of the environment, meant to capture summarizing abstractions. We show that the modularity brought by this approach leads to good generalization while being computationally efficient, with planning happening in a smaller latent state space. In addition, this approach recovers a sufficient low-dimensional representation of the environment, which opens up new strategies for interpretable AI, exploration and transfer learning.
Learning Options with Interest Functions
Learning temporal abstractions which are partial solutions to a task and could be reused for solving other tasks is an ingredient that can h… (see more)elp agents to plan and learn efficiently. In this work, we tackle this problem in the options framework. We aim to autonomously learn options which are specialized in different state space regions by proposing a notion of interest functions, which generalizes initiation sets from the options framework for function approximation. We build on the option-critic framework to derive policy gradient theorems for interest functions, leading to a new interest-option-critic architecture.
Leveraging Observations in Bandits: Between Risks and Benefits
Andrei-Stefan Lupu
Imitation learning has been widely used to speed up learning in novice agents, by allowing them to leverage existing data from experts. Allo… (see more)wing an agent to be influenced by external observations can benefit to the learning process, but it also puts the agent at risk of following sub-optimal behaviours. In this paper, we study this problem in the context of bandits. More specifically, we consider that an agent (learner) is interacting with a bandit-style decision task, but can also observe a target policy interacting with the same environment. The learner observes only the target’s actions, not the rewards obtained. We introduce a new bandit optimism modifier that uses conditional optimism contingent on the actions of the target in order to guide the agent’s exploration. We analyze the effect of this modification on the well-known Upper Confidence Bound algorithm by proving that it preserves a regret upper-bound of order O(lnT), even in the presence of a very poor target, and we derive the dependency of the expected regret on the general target policy. We provide empirical results showing both great benefits as well as certain limitations inherent to observational learning in the multi-armed bandit setting. Experiments are conducted using targets satisfying theoretical assumptions with high probability, thus narrowing the gap between theory and application.
Prediction of Disease Progression in Multiple Sclerosis Patients using Deep Learning Analysis of MRI Data
Adrian Tousignant
Paul Lemaitre
Douglas Arnold
We present the first automatic end-to-end deep learning framework for the prediction of future patient disability progression (one year from… (see more) baseline) based on multi-modal brain Magnetic Resonance Images (MRI) of patients with Multiple Sclerosis (MS). The model uses parallel convolutional pathways, an idea introduced by the popular Inception net (Szegedy et al., 2015) and is trained and tested on two large proprietary, multi-scanner, multi-center, clinical trial datasets of patients with Relapsing-Remitting Multiple Sclerosis (RRMS). Experiments on 465 patients on the placebo arms of the trials indicate that the model can accurately predict future disease progression, measured by a sustained increase in the extended disability status scale (EDSS) score over time. Using only the multi-modal MRI provided at baseline, the model achieves an AUC of 0.66±0.055. However, when supplemental lesion label masks are provided as inputs as well, the AUC increases to 0.701± 0.027. Furthermore, we demonstrate that uncertainty estimates based on Monte Carlo dropout sample variance correlate with errors made by the model. Clinicians provided with the predictions computed by the model can therefore use the associated uncertainty estimates to assess which scans require further examination.
Connecting Weighted Automata and Recurrent Neural Networks through Spectral Learning
In this paper, we unravel a fundamental connection between weighted finite automata~(WFAs) and second-order recurrent neural networks~(2-RNN… (see more)s): in the case of sequences of discrete symbols, WFAs and 2-RNNs with linear activation functions are expressively equivalent. Motivated by this result, we build upon a recent extension of the spectral learning algorithm to vector-valued WFAs and propose the first provable learning algorithm for linear 2-RNNs defined over sequences of continuous input vectors. This algorithm relies on estimating low rank sub-blocks of the so-called Hankel tensor, from which the parameters of a linear 2-RNN can be provably recovered. The performances of the proposed method are assessed in a simulation study.
Prediction of Progression in Multiple Sclerosis Patients
Adrian Tousignant
Paul Lemaitre
Douglas Arnold
We present the first automatic end-to-end deep learning framework for the prediction of future patient disability progression (one year from… (see more) baseline) based on multi-modal brain Magnetic Resonance Images (MRI) of patients with Multiple Sclerosis (MS). The model uses parallel convolutional pathways, an idea introduced by the popular Inception net and is trained and tested on two large proprietary, multi-scanner, multi-center, clinical trial datasets of patients with Relapsing-Remitting Multiple Sclerosis (RRMS). Experiments on 465 patients on the placebo arms of the trials indicate that the model can accurately predict future disease progression, measured by a sustained increase in the extended disability status scale (EDSS) score over time. Using only the multi-modal MRI provided at baseline, the model achieves an AUC of 0.66 +- 0.055. However, when supplemental lesion label masks are provided as inputs as well, the AUC increases to 0.701 +- 0.027. Furthermore, we demonstrate that uncertainty estimates based on Monte Carlo dropout sample variance correlate with errors made by the model. Clinicians provided with the predictions computed by the model can therefore use the associated uncertainty estimates to assess which scans require further examination.
The Termination Critic
Anna Harutyunyan
Will Dabney
Diana L. Borsa
Nicolas Heess
Remi Munos
In this work, we consider the problem of autonomously discovering behavioral abstractions, or options, for reinforcement learning agents. We… (see more) propose an algorithm that focuses on the termination function, as opposed to - as is common - the policy. The termination function is usually trained to optimize a control objective: an option ought to terminate if another has better value. We offer a different, information-theoretic perspective, and propose that terminations should focus instead on the compressibility of the option’s encoding - arguably a key reason for using abstractions.To achieve this algorithmically, we leverage the classical options framework, and learn the option transition model as a “critic” for the termination function. Using this model, we derive gradients that optimize the desired criteria. We show that the resulting options are non-trivial, intuitively meaningful, and useful for learning.