Portrait of Doina Precup

Doina Precup

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, McGill University, School of Computer Science
Research Team Leader, Google DeepMind
Research Topics
Medical Machine Learning
Molecular Modeling
Probabilistic Models
Reasoning
Reinforcement Learning

Biography

Doina Precup combines teaching at McGill University with fundamental research on reinforcement learning, in particular AI applications in areas of significant social impact, such as health care. She is interested in machine decision-making in situations where uncertainty is high.

In addition to heading the Montreal office of Google DeepMind, Precup is a Senior Fellow of the Canadian Institute for Advanced Research and a Fellow of the Association for the Advancement of Artificial Intelligence.

Her areas of speciality are artificial intelligence, machine learning, reinforcement learning, reasoning and planning under uncertainty, and applications.

Current Students

PhD - McGill University
PhD - McGill University
Co-supervisor :
Collaborating Alumni - McGill University
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Principal supervisor :
Master's Research - McGill University
Principal supervisor :
Collaborating researcher - McGill University
Co-supervisor :
Research Intern - Université de Montréal
PhD - McGill University
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - McGill University
Collaborating Alumni - McGill University
Master's Research - McGill University
Collaborating Alumni - McGill University
PhD - Polytechnique Montréal
Postdoctorate - McGill University
Master's Research - McGill University
Collaborating Alumni - McGill University
Undergraduate - McGill University
PhD - McGill University
Principal supervisor :
PhD - McGill University
Collaborating Alumni - McGill University
Master's Research - McGill University
Principal supervisor :
Collaborating researcher - McGill University
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Principal supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
Co-supervisor :
PhD - McGill University
Research Intern - McGill University
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Principal supervisor :
PhD - McGill University
Collaborating Alumni - McGill University
Co-supervisor :

Publications

Assessing Intrapartum Risk of Hypoxic Ischemic Encephalopathy Using Fetal Heart Rate With Long Short-Term Memory Networks
"Derek Kweku DEGBEDZUI
Michael W Kuzniewicz
Marie-Coralie Cornet
Yvonne Wu
Heather Forquer
Lawrence Gerstley
Emily F. Hamilton
P. Warrick
Robert E. Kearney
This study investigated the prediction of the risk of hypoxic ischemic encephalopathy using intrapartum cardiotocography records with a long… (see more) short-term memory re-current neural network. Across the 12 hours of labour, HIE sensitivity rose from 0.25 to 0.56 as delivery approached while specificity remained approximately constant with a mean of 0.71 and standard deviation of 0.04. The results show that classification improves as delivery approaches but that performance needs improvement. Future work will address the limitations of this preliminary study by investigating input signal transformations and the use of other network architectures to improve the model performance.
Deep learning, reinforcement learning, and world models
Yu Matsuo
Maneesh Sahani
David Silver
Masashi Sugiyama
Eiji Uchibe
J. Morimoto
Automated prediction of extubation success in extremely preterm infants: the APEX multicenter study
Lara Kanbar
Wissam Shalish
Samantha Latremouille
Lajos Kovacs
Martin Keszler
Sanjay Chawla
Karen A. Brown
R. Kearney
Guilherme M. Sant’Anna
On the Expressivity of Markov Reward (Extended Abstract)
David Abel
Will Dabney
Anna Harutyunyan
Mark K. Ho
Michael L. Littman
Satinder Singh
Why Should I Trust You, Bellman? The Bellman Error is a Poor Replacement for Value Error
Ofir Nachum
Shixiang Shane Gu
In this work, we study the use of the Bellman equation as a surrogate objective for value prediction accuracy. While the Bellman equation is… (see more) uniquely solved by the true value function over all state-action pairs, we find that the Bellman error (the difference between both sides of the equation) is a poor proxy for the accuracy of the value function. In particular, we show that (1) due to cancellations from both sides of the Bellman equation, the magnitude of the Bellman error is only weakly related to the distance to the true value function, even when considering all state-action pairs, and (2) in the finite data regime, the Bellman equation can be satisfied exactly by infinitely many suboptimal solutions. This means that the Bellman error can be minimized without improving the accuracy of the value function. We demonstrate these phenomena through a series of propositions, illustrative toy examples, and empirical analysis in standard benchmark domains.
PhyloPGM: boosting regulatory function prediction accuracy using evolutionary information
Abstract Motivation The computational prediction of regulatory function associated with a genomic sequence is of utter importance in -omics … (see more)study, which facilitates our understanding of the underlying mechanisms underpinning the vast gene regulatory network. Prominent examples in this area include the binding prediction of transcription factors in DNA regulatory regions, and predicting RNA–protein interaction in the context of post-transcriptional gene expression. However, existing computational methods have suffered from high false-positive rates and have seldom used any evolutionary information, despite the vast amount of available orthologous data across multitudes of extant and ancestral genomes, which readily present an opportunity to improve the accuracy of existing computational methods. Results In this study, we present a novel probabilistic approach called PhyloPGM that leverages previously trained TFBS or RNA–RBP binding predictors by aggregating their predictions from various orthologous regions, in order to boost the overall prediction accuracy on human sequences. Throughout our experiments, PhyloPGM has shown significant improvement over baselines such as the sequence-based RNA–RBP binding predictor RNATracker and the sequence-based TFBS predictor that is known as FactorNet. PhyloPGM is simple in principle, easy to implement and yet, yields impressive results. Availability and implementation The PhyloPGM package is available at https://github.com/BlanchetteLab/PhyloPGM Supplementary information Supplementary data are available at Bioinformatics online.
Understanding Decision-Time vs. Background Planning in Model-Based Reinforcement Learning
In model-based reinforcement learning, an agent can leverage a learned model to improve its way of behaving in different ways. Two prevalent… (see more) approaches are decision-time planning and background planning. In this study, we are interested in understanding under what conditions and in which settings one of these two planning styles will perform better than the other in domains that require fast responses. After viewing them through the lens of dynamic programming, we first consider the classical instantiations of these planning styles and provide theoretical results and hypotheses on which one will perform better in the pure planning, planning&learning, and transfer learning settings. We then consider the modern instantiations of these planning styles and provide hypotheses on which one will perform better in the last two of the considered settings. Lastly, we perform several illustrative experiments to empirically validate both our theoretical results and hypotheses. Overall, our findings suggest that even though decision-time planning does not perform as well as background planning in their classical instantiations, in their modern instantiations, it can perform on par or better than background planning in both the planning&learning and transfer learning settings.
Deep Learning Prediction of Response to Disease Modifying Therapy in Primary Progressive Multiple Sclerosis (P1-1.Virtual)
Jean-Pierre R. Falet
Joshua D. Durso-Finley
Julien Schroeter
Francesca Bovis
Maria-Pia Sormani
Douglas Arnold
Don't Freeze Your Embedding: Lessons from Policy Finetuning in Environment Transfer
Victoria Dean
Daniel Toyama
A common occurrence in reinforcement learning (RL) research is making use of a pretrained vision stack that converts image observations to l… (see more)atent vectors. Using a visual embedding in this way leaves open questions, though: should the vision stack be updated with the policy? In this work, we evaluate the effectiveness of such decisions in RL transfer settings. We introduce policy update formulations for use after pretraining in a different environment and analyze the performance of such formulations. Through this evaluation, we also detail emergent metrics of benchmark suites and present results on Atari and AndroidEnv.
Learning how to Interact with a Complex Interface using Hierarchical Reinforcement Learning
Gheorghe Comanici
Amelia Glaese
Anita Gergely
Daniel Toyama
Tyler Jackson
Hierarchical Reinforcement Learning (HRL) allows interactive agents to decompose complex problems into a hierarchy of sub-tasks. Higher-leve… (see more)l tasks can invoke the solutions of lower-level tasks as if they were primitive actions. In this work, we study the utility of hierarchical decompositions for learning an appropriate way to interact with a complex interface. Specifically, we train HRL agents that can interface with applications in a simulated Android device. We introduce a Hierarchical Distributed Deep Reinforcement Learning architecture that learns (1) subtasks corresponding to simple finger gestures, and (2) how to combine these gestures to solve several Android tasks. Our approach relies on goal conditioning and can be used more generally to convert any base RL agent into an HRL agent. We use the AndroidEnv environment to evaluate our approach. For the experiments, the HRL agent uses a distributed version of the popular DQN algorithm to train different components of the hierarchy. While the native action space is completely intractable for simple DQN agents, our architecture can be used to establish an effective way to interact with different tasks, significantly improving the performance of the same DQN agent over different levels of abstraction.
Selective Credit Assignment
Diana Borsa
Hado Philip van Hasselt
Improving Sample Efficiency of Value Based Models Using Attention and Vision Transformers
Amir Ardalan Kalantari
Mohammad Saeed Amini
Much of recent Deep Reinforcement Learning success is owed to the neural architecture's potential to learn and use effective internal repres… (see more)entations of the world. While many current algorithms access a simulator to train with a large amount of data, in realistic settings, including while playing games that may be played against people, collecting experience can be quite costly. In this paper, we introduce a deep reinforcement learning architecture whose purpose is to increase sample efficiency without sacrificing performance. We design this architecture by incorporating advances achieved in recent years in the field of Natural Language Processing and Computer Vision. Specifically, we propose a visually attentive model that uses transformers to learn a self-attention mechanism on the feature maps of the state representation, while simultaneously optimizing return. We demonstrate empirically that this architecture improves sample complexity for several Atari environments, while also achieving better performance in some of the games.