Simon Lacoste-Julien

Mila > À propos de Mila > Équipe > Simon Lacoste-Julien
Membre Académique Principal
Simon Lacoste-Julien
Professeur agrégé, Université de Montréal, Samsung
Simon Lacoste-Julien

Simon Lacoste-Julien est professeur agrégé dans le département d’informatique et de recherche opérationnelle de l’Université de Montréal, membre co-fondateur de Mila et détenteur d’une Chaire en IA CIFAR-Canada. Ses recherches portent sur l’apprentissage automatique et les mathématiques appliquées, avec comme application la vision par ordinateur et le traitement automatique des langues. Il a obtenu son doctorat en informatique à l’Université de Californie à Berkeley en 2009, suivi d’un post-doc à l’Université de Cambridge et a été chercheur au sein de INRIA et le département d’informatique de l’École normale supérieur de Paris pendant quelques années avant de faire un retour au bercail à Montréal en 2016 pour se joindre au projet de Yoshua Bengio de faire de Montréal une « silicon mountain » de l’intelligence artificielle.

Publications

2021-05

Adaptive Gradient Methods Converge Faster with Over-Parameterization (and you can do a line-search)
Sharan Vaswani, Issam H. Laradji, Frederik Kunstner, Si Yi Meng, Mark Schmidt and Simon Lacoste-Julien
arXiv e-prints
(2021-05-04)
ui.adsabs.harvard.eduPDF
Repurposing Pretrained Models for Robust Out-of-domain Few-Shot Learning
Namyeong Kwon, Hwidong Na, Gabriel Huang and Simon Lacoste-Julien

2021-03

Online Adversarial Attacks.
Andjela Mladenovic, Avishek Joey Bose, Hugo Berard, William L. Hamilton, Simon Lacoste-Julien, Pascal Vincent and Gauthier Gidel
arXiv preprint arXiv:2103.02014
(2021-03-02)
dblp.uni-trier.dePDF

2021-02

SVRG Meets AdaGrad: Painless Variance Reduction.
Benjamin Dubois-Taine, Sharan Vaswani, Reza Babanezhad, Mark Schmidt and Simon Lacoste-Julien
arXiv preprint arXiv:2102.09645
(2021-02-18)
ui.adsabs.harvard.eduPDF

2021-01

Implicit Regularization via Neural Feature Alignment.
Aristide Baratin, Thomas George, César Laurent, R. Devon Hjelm, Guillaume Lajoie, Pascal Vincent and Simon Lacoste-Julien

2020-12

Machine learning in airline crew pairing to construct initial clusters for dynamic constraint aggregation
Yassine Yaakoubi, François Soumis and Simon Lacoste-Julien

2020-11

Geometry-Aware Universal Mirror-Prox.
Reza Babanezhad and Simon Lacoste-Julien
arXiv preprint arXiv:2011.11203
(2020-11-23)
dblp.uni-trier.dePDF
On the Convergence of Continuous Constrained Optimization for Structure Learning.
Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke and Simon Lacoste-Julien
arXiv preprint arXiv:2011.11150
(2020-11-23)
ui.adsabs.harvard.eduPDF
Affine Invariant Analysis of Frank-Wolfe on Strongly Convex Sets
Thomas Kerdreux, Lewis Liu, Simon Lacoste-Julien and Damien Scieur
arXiv: Optimization and Control
(2020-11-06)
au.arxiv.orgPDF

2020-09

Flight-connection Prediction for Airline Crew Scheduling to Construct Initial Clusters for OR Optimizer
Yassine Yaakoubi, François Soumis and Simon Lacoste-Julien
arXiv preprint arXiv:2009.12501
(2020-09-26)
arxiv.orgPDF

2020-08

Implicit Regularization in Deep Learning: A View from Function Space.
Aristide Baratin, Thomas George, César Laurent, R. Devon Hjelm, Guillaume Lajoie, Pascal Vincent and Simon Lacoste-Julien
(venue unknown)
(2020-08-03)
www.microsoft.comPDF

2020-07

Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien and Ioannis Mitliagkas
Adversarial Example Games.
Avishek Joey Bose, Gauthier Gidel, Hugo Berard, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien and William L. Hamilton
arXiv preprint arXiv:2007.00720
(2020-07-01)
ui.adsabs.harvard.eduPDF

2020-06

To Each Optimizer a Norm, To Each Norm its Generalization.
Sharan Vaswani, Reza Babanezhad, Jose Gallego, Aaron Mishkin, Simon Lacoste-Julien and Nicolas Le Roux
arXiv preprint arXiv:2006.06821
(2020-06-11)
ui.adsabs.harvard.eduPDF
GAIT: A Geometric Approach to Information Theory
Jose Gallego-Posada, Ankit Vani, Max Schwarzer and Simon Lacoste-Julien
AISTATS 2020
(2020-06-03)
proceedings.mlr.pressPDF
Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation.
Si Yi Meng, Sharan Vaswani, Issam Hadj Laradji, Mark Schmidt and Simon Lacoste-Julien

2020-05

An Analysis of the Adaptation Speed of Causal Models
Rémi Le Priol, Reza Babanezhad Harikandeh, Yoshua Bengio and Simon Lacoste-Julien

2020-04

Gradient-Based Neural DAG Learning
Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu and Simon Lacoste-Julien
A Closer Look at the Optimization Landscapes of Generative Adversarial Networks
Hugo Berard, Gauthier Gidel, Amjad Almahairi, Pascal Vincent and Simon Lacoste-Julien

2020-01

Adversarial Example Games
Joey Bose, Gauthier Gidel, Hugo Berard, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien and Will Hamilton
NEURIPS 2020
(2020-01-01)
papers.nips.ccPDF
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence.
Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji and Simon Lacoste-Julien
Differentiable Causal Discovery from Interventional Data
Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien and Alexandre Drouin
A Tight and Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Differentiable Games.
AISTATS 2020
(2020-01-01)
proceedings.mlr.press
Accelerating Smooth Games by Manipulating Spectral Shapes.
Waïss Azizian, Damien Scieur, Ioannis Mitliagkas, Simon Lacoste-Julien and Gauthier Gidel

2019-09

Are Few-shot Learning Benchmarks Too Simple ?
(venue unknown)
(2019-09-25)
openreview.netPDF
Scattering Networks for Hybrid Representation Learning
Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos Komodakis, Simon Lacoste-Julien, Matthew Blaschko and Eugene Belilovsky
IEEE Transactions on Pattern Analysis and Machine Intelligence
(2019-09-01)
europepmc.orgPDF

2019-06

GEAR: Geometry-Aware Rényi Information.
Jose Gallego-Posada, Ankit Vani, Max Schwarzer and Simon Lacoste-Julien
(venue unknown)
(2019-06-19)
dblp.uni-trier.de
GAIT: A Geometric Approach to Information Theory
Jose Gallego, Ankit Vani, Max Schwarzer and Simon Lacoste-Julien
arXiv preprint arXiv:1906.08325
(2019-06-19)
ui.adsabs.harvard.eduPDF
A Tight and Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Games
arXiv: Learning
(2019-06-13)
ui.adsabs.harvard.eduPDF
A Tight and Unified Analysis of Extragradient for a Whole Spectrum of Differentiable Games.
arXiv: Learning
(2019-06-13)
dblp.uni-trier.dePDF

2019-05

Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani, Aaron Mishkin, Issam H. Laradji, Mark Schmidt, Gauthier Gidel and Simon Lacoste-Julien

2019-04

Negative Momentum for Improved Game Dynamics
Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Gabriel Huang, Rémi Le Priol, Simon Lacoste-Julien and Ioannis Mitliagkas
AISTATS 2019
(2019-04-11)
proceedings.mlr.pressPDF
Flight-connection prediction for airline crew scheduling to construct initial clusters for OR optimizer
Yassine Yaakoubi, Simon Lacoste-Julien and François Soumis
Les Cahiers du GERAD
(2019-04-01)
www.gerad.ca

2019-02

Are Few-Shot Learning Benchmarks too Simple ? Solving them without Task Supervision at Test-Time
arXiv preprint arXiv:1902.08605
(2019-02-22)
ui.adsabs.harvard.eduPDF
Centroid Networks for Few-Shot Clustering and Unsupervised Few-Shot Classification.
(venue unknown)
(2019-02-22)
dblp.uni-trier.dePDF

2019-01

Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks
Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova, Gauthier Gidel, François Fleuret and Simon Lacoste-Julien

2018-10

Quantifying Learning Guarantees for Convex but Inconsistent Surrogates
Kirill Struminsky, Simon Lacoste-Julien and Anton Osokin

2018-09

A Modern Take on the Bias-Variance Tradeoff in Neural Networks
Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-Julien and Ioannis Mitliagkas
arXiv preprint arXiv:1810.08591
(2018-09-27)
ui.adsabs.harvard.eduPDF
Learning from Narrated Instruction Videos
Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev and Simon Lacoste-Julien
IEEE Transactions on Pattern Analysis and Machine Intelligence
(2018-09-01)
hal.archives-ouvertes.frPDF

2018-08

Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields
Rémi Le Priol, Alexandre Piché and Simon Lacoste-Julien
UAI 2018
(2018-08-06)
auai.orgPDF

2018-07

Predicting Tactical Solutions to Operational Planning Problems under Imperfect Information
Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien and Andrea Lodi
arXiv preprint arXiv:1901.07935
(2018-07-31)
export.arxiv.orgPDF
Predicting Solution Summaries to Integer Linear Programs under Imperfect Information with Machine Learning.
Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien and Andrea Lodi
(venue unknown)
(2018-07-31)
dblp.uni-trier.de
Negative Momentum for Improved Game Dynamics
Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Remi Lepriol, Gabriel Huang, Simon Lacoste-Julien and Ioannis Mitliagkas
arXiv preprint arXiv:1807.04740
(2018-07-12)
ui.adsabs.harvard.eduPDF

2018-03

Frank-Wolfe Splitting via Augmented Lagrangian Method
Gauthier Gidel, Fabian Pedregosa and Simon Lacoste-Julien

2018-02

A Variational Inequality Perspective on Generative Adversarial Networks
Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent and Simon Lacoste-Julien
SeaRNN: Training RNNs with Global-Local Losses
Rémi Leblond, Jean-Baptiste Alayrac, Anton Osokin and Simon Lacoste-Julien
ICLR 2018
(2018-02-15)
hal.archives-ouvertes.frPDF
Parametric Adversarial Divergences are Good Task Losses for Generative Modeling
Gabriel Huang, Hugo Berard, Ahmed Touati, Gauthier Gidel, Pascal Vincent and Simon Lacoste-Julien
ICLR 2018
(2018-02-01)
ui.adsabs.harvard.eduPDF

2018-01

A3T: Adversarially Augmented Adversarial Training.
Akram Erraqabi, Aristide Baratin, Yoshua Bengio and Simon Lacoste-Julien
arXiv: Learning
(2018-01-12)
ui.adsabs.harvard.eduPDF
Improved asynchronous parallel optimization analysis for stochastic incremental methods
Rémi Leblond, Fabian Pedregosa and Simon Lacoste-Julien
Journal of Machine Learning Research
(2018-01-01)
jmlr.orgPDF[LATEST on arXiv preprint arXiv:1801.03749 (2018-01-11)]

Publications collected and formatted using Paperoni

array(1) { ["wp-wpml_current_language"]=> string(2) "fr" }