Portrait de Divyat Mahajan n'est pas disponible

Divyat Mahajan

Doctorat - UdeM
Superviseur⋅e principal⋅e
Sujets de recherche
Apprentissage de représentations
Apprentissage profond
Causalité
Théorie de l'apprentissage automatique
Vision par ordinateur

Publications

Iterative Amortized Inference: Unifying In-Context Learning and Learned Optimizers
Modern learning systems increasingly rely on amortized learning - the idea of reusing computation or inductive biases shared across tasks to… (voir plus) enable rapid generalization to novel problems. This principle spans a range of approaches, including meta-learning, in-context learning, prompt tuning, learned optimizers and more. While motivated by similar goals, these approaches differ in how they encode and leverage task-specific information, often provided as in-context examples. In this work, we propose a unified framework which describes how such methods differ primarily in the aspects of learning they amortize - such as initializations, learned updates, or predictive mappings - and how they incorporate task data at inference. We introduce a taxonomy that categorizes amortized models into parametric, implicit, and explicit regimes, based on whether task adaptation is externalized, internalized, or jointly modeled. Building on this view, we identify a key limitation in current approaches: most methods struggle to scale to large datasets because their capacity to process task data at inference (e.g., context length) is often limited. To address this, we propose iterative amortized inference, a class of models that refine solutions step-by-step over mini-batches, drawing inspiration from stochastic optimization. Our formulation bridges optimization-based meta-learning with forward-pass amortization in models like LLMs, offering a scalable and extensible foundation for general-purpose task adaptation.
Iterative Amortized Inference: Unifying In-Context Learning and Learned Optimizers
Compositional Risk Minimization
Compositional generalization is a crucial step towards developing data-efficient intelligent machines that generalize in human-like ways. In… (voir plus) this work, we tackle a challenging form of distribution shift, termed compositional shift, where some attribute combinations are completely absent at training but present in the test distribution. This shift tests the model’s ability to generalize compositionally to novel attribute combinations in discriminative tasks. We model the data with flexible additive energy distributions, where each energy term represents an attribute, and derive a simple alternative to empirical risk minimization termed compositional risk minimization (CRM). We first train an additive energy classifier to predict the multiple attributes and then adjust this classifier to tackle compositional shifts. We provide an extensive theoretical analysis of CRM, where we show that our proposal extrapolates to special affine hulls of seen attribute combinations. Empirical evaluations on benchmark datasets confirms the improved robustness of CRM compared to other methods from the literature designed to tackle various forms of subpopulation shifts.
Compositional Risk Minimization
Learning to Defer for Causal Discovery with Imperfect Experts
Integrating expert knowledge, e.g. from large language models, into causal discovery algorithms can be challenging when the knowledge is not… (voir plus) guaranteed to be correct. Expert recommendations may contradict data-driven results, and their reliability can vary significantly depending on the domain or specific query. Existing methods based on soft constraints or inconsistencies in predicted causal relationships fail to account for these variations in expertise. To remedy this, we propose L2D-CD, a method for gauging the correctness of expert recommendations and optimally combining them with data-driven causal discovery results. By adapting learning-to-defer (L2D) algorithms for pairwise causal discovery (CD), we learn a deferral function that selects whether to rely on classical causal discovery methods using numerical data or expert recommendations based on textual meta-data. We evaluate L2D-CD on the canonical Tübingen pairs dataset and demonstrate its superior performance compared to both the causal discovery method and the expert used in isolation. Moreover, our approach identifies domains where the expert's performance is strong or weak. Finally, we outline a strategy for generalizing this approach to causal discovery on graphs with more than two variables, paving the way for further research in this area.
Learning to Defer for Causal Discovery with Imperfect Experts
Integrating expert knowledge, e.g. from large language models, into causal discovery algorithms can be challenging when the knowledge is not… (voir plus) guaranteed to be correct. Expert recommendations may contradict data-driven results, and their reliability can vary significantly depending on the domain or specific query. Existing methods based on soft constraints or inconsistencies in predicted causal relationships fail to account for these variations in expertise. To remedy this, we propose L2D-CD, a method for gauging the correctness of expert recommendations and optimally combining them with data-driven causal discovery results. By adapting learning-to-defer (L2D) algorithms for pairwise causal discovery (CD), we learn a deferral function that selects whether to rely on classical causal discovery methods using numerical data or expert recommendations based on textual meta-data. We evaluate L2D-CD on the canonical Tübingen pairs dataset and demonstrate its superior performance compared to both the causal discovery method and the expert used in isolation. Moreover, our approach identifies domains where the expert's performance is strong or weak. Finally, we outline a strategy for generalizing this approach to causal discovery on graphs with more than two variables, paving the way for further research in this area.
Evaluating Interventional Reasoning Capabilities of Large Language Models
Numerous decision-making tasks require estimating causal effects under interventions on different parts of a system. As practitioners consid… (voir plus)er using large language models (LLMs) to automate decisions, studying their causal reasoning capabilities becomes crucial. A recent line of work evaluates LLMs ability to retrieve commonsense causal facts, but these evaluations do not sufficiently assess how LLMs reason about interventions. Motivated by the role that interventions play in causal inference, in this paper, we conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention. We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning. These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts. Our analysis on four LLMs highlights that while GPT- 4 models show promising accuracy at predicting the intervention effects, they remain sensitive to distracting factors in the prompts.
Evaluating Interventional Reasoning Capabilities of Large Language Models
Numerous decision-making tasks require estimating causal effects under interventions on different parts of a system. As practitioners consid… (voir plus)er using large language models (LLMs) to automate decisions, studying their causal reasoning capabilities becomes crucial. A recent line of work evaluates LLMs ability to retrieve commonsense causal facts, but these evaluations do not sufficiently assess how LLMs reason about interventions. Motivated by the role that interventions play in causal inference, in this paper, we conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention. We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning. These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts. We evaluate six LLMs on the benchmarks, finding that GPT models show promising accuracy at predicting the intervention effects.
Evaluating Interventional Reasoning Capabilities of Large Language Models
Numerous decision-making tasks require estimating causal effects under interventions on different parts of a system. As practitioners consid… (voir plus)er using large language models (LLMs) to automate decisions, studying their causal reasoning capabilities becomes crucial. A recent line of work evaluates LLMs ability to retrieve commonsense causal facts, but these evaluations do not sufficiently assess how LLMs reason about interventions. Motivated by the role that interventions play in causal inference, in this paper, we conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention. We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning. These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts. We evaluate six LLMs on the benchmarks, finding that GPT models show promising accuracy at predicting the intervention effects.
Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation
Brady Neal
Vasilis Syrgkanis
Empirical Analysis of Model Selection for Heterogenous Causal Effect Estimation
Brady Neal
Vasilis Syrgkanis
We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estima… (voir plus)tion under binary treatments. Unlike model selection in machine learning, there is no perfect analogue of cross-validation as we do not observe the counterfactual potential outcome for any data point. Towards this, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models estimated from the observed data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can access the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics introduced in the literature, and novel ones introduced in this work, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. Our analysis suggests novel model selection strategies based on careful hyperparameter tuning of CATE estimators and causal ensembling.
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
We tackle the problems of latent variables identification and "out-of-support'' image generation in representation learning. We show that bo… (voir plus)th are possible for a class of decoders that we call additive, which are reminiscent of decoders used for object-centric representation learning (OCRL) and well suited for images that can be decomposed as a sum of object-specific images. We provide conditions under which exactly solving the reconstruction problem using an additive decoder is guaranteed to identify the blocks of latent variables up to permutation and block-wise invertible transformations. This guarantee relies only on very weak assumptions about the distribution of the latent factors, which might present statistical dependencies and have an almost arbitrarily shaped support. Our result provides a new setting where nonlinear independent component analysis (ICA) is possible and adds to our theoretical understanding of OCRL methods. We also show theoretically that additive decoders can generate novel images by recombining observed factors of variations in novel ways, an ability we refer to as Cartesian-product extrapolation. We show empirically that additivity is crucial for both identifiability and extrapolation on simulated data.