Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Perspectives sur l’IA pour les responsables des politiques
Co-dirigé par Mila et le CIFAR, ce programme met en relation les décideur·euse·s avec des chercheur·euse·s de pointe en IA grâce à une combinaison de consultations ouvertes et d'exercices de test de faisabilité des politiques. La prochaine session aura lieu les 9 et 10 octobre.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Causal representation learning has showed a variety of settings in which we can disentangle latent variables with identifiability guarantees… (voir plus) (up to some reasonable equivalence class). Common to all of these approaches is the assumption that (1) the latent variables are represented as
Symmetry-based neural networks often constrain the architecture in order to achieve invariance or equivariance to a group of transformations… (voir plus). In this paper, we propose an alternative that avoids this architectural constraint by learning to produce a canonical representation of the data. These canonicalization functions can readily be plugged into non-equivariant backbone architectures. We offer explicit ways to implement them for many groups of interest. We show that this approach enjoys universality while providing interpretable insights. Our main hypothesis is that learning a neural network to perform canonicalization is better than doing it using predefined heuristics. Our results show that learning the canonicalization function indeed leads to better results and that the approach achieves great performance in practice.
Ensemble methods combine the predictions of multiple models to improve performance, but they require significantly higher computation costs … (voir plus)at inference time. To avoid these costs, multiple neural networks can be combined into one by averaging their weights. However, this usually performs significantly worse than ensembling. Weight averaging is only beneficial when different enough to benefit from combining them, but similar enough to average well. Based on this idea, we propose PopulAtion Parameter Averaging (PAPA): a method that combines the generality of ensembling with the efficiency of weight averaging. PAPA leverages a population of diverse models (trained on different data orders, augmentations, and regularizations) while slowly pushing the weights of the networks toward the population average of the weights. We also propose PAPA variants (PAPA-all, and PAPA-2) that average weights rarely rather than continuously; all methods increase generalization, but PAPA tends to perform best. PAPA reduces the performance gap between averaging and ensembling, increasing the average accuracy of a population of models by up to 0.8% on CIFAR-10, 1.9% on CIFAR-100, and 1.6% on ImageNet when compared to training independent (non-averaged) models.
Ensemble methods combine the predictions of multiple models to improve performance, but they require significantly higher computation costs … (voir plus)at inference time. To avoid these costs, multiple neural networks can be combined into one by averaging their weights. However, this usually performs significantly worse than ensembling. Weight averaging is only beneficial when different enough to benefit from combining them, but similar enough to average well. Based on this idea, we propose PopulAtion Parameter Averaging (PAPA): a method that combines the generality of ensembling with the efficiency of weight averaging. PAPA leverages a population of diverse models (trained on different data orders, augmentations, and regularizations) while slowly pushing the weights of the networks toward the population average of the weights. We also propose PAPA variants (PAPA-all, and PAPA-2) that average weights rarely rather than continuously; all methods increase generalization, but PAPA tends to perform best. PAPA reduces the performance gap between averaging and ensembling, increasing the average accuracy of a population of models by up to 0.8% on CIFAR-10, 1.9% on CIFAR-100, and 1.6% on ImageNet when compared to training independent (non-averaged) models.
We approach the problem of improving robustness of deep learning algorithms in the presence of label noise. Building upon existing label cor… (voir plus)rection and co-teaching methods, we propose a novel training procedure to mitigate the memorization of noisy labels, called CrossSplit, which uses a pair of neural networks trained on two disjoint parts of the labelled dataset. CrossSplit combines two main ingredients: (i) Cross-split label correction. The idea is that, since the model trained on one part of the data cannot memorize example-label pairs from the other part, the training labels presented to each network can be smoothly adjusted by using the predictions of its peer network; (ii) Cross-split semi-supervised training. A network trained on one part of the data also uses the unlabeled inputs of the other part. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet and mini-WebVision datasets demonstrate that our method can outperform the current state-of-the-art in a wide range of noise ratios.