Découvrez le dernier rapport d'impact de Mila, qui met en lumière les réalisations exceptionnelles des membres de notre communauté au cours de la dernière année.
Rapport et guide politique GPAI: Vers une réelle égalité en IA
Rejoignez-nous à Mila le 26 novembre pour le lancement du rapport et du guide politique qui présente des recommandations concrètes pour construire des écosystèmes d'IA inclusifs.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Bayesian Persuasion is proposed as a tool for social media platforms to combat the spread of misinformation. Since platforms can use machine… (voir plus) learning to predict the popularity and misinformation features of to-be-shared posts, and users are largely motivated to share popular content, platforms can strategically signal this informational advantage to change user beliefs and persuade them not to share misinformation. We characterize the optimal signaling scheme with imperfect predictions as a linear program and give sufficient and necessary conditions on the classifier to ensure optimal platform utility is non-decreasing and continuous. Next, this interaction is considered under a performative model, wherein platform intervention affects the user's future behaviour. The convergence and stability of optimal signaling under this performative process are fully characterized. Lastly, we experimentally validate that our approach significantly reduces misinformation in both the single round and performative setting.
2024-07-08
Proceedings of the 41st International Conference on Machine Learning (publié)
Ca2+ imaging methods are widely used for studying cellular activity in the brain, allowing detailed analysis of dynamic processes across var… (voir plus)ious scales. Enhanced by high-contrast optical microscopy and fluorescent Ca2+ sensors, this technique can be used to reveal localized Ca2+ fluctuations within neurons, including in sub-cellular compartments, such as the dendritic shaft or spines. Despite advances in Ca2+ sensors, the analysis of miniature Synaptic Calcium Transients (mSCTs), characterized by variability in morphology and low signal-to-noise ratios, remains challenging. Traditional threshold-based methods struggle with the detection and segmentation of these small, dynamic events. Deep learning (DL) approaches offer promising solutions but are limited by the need for large annotated datasets. Positive Unlabeled (PU) learning addresses this limitation by leveraging unlabeled instances to increase dataset size and enhance performance. This approach is particularly useful in the case of mSCTs that are scarce and small, associated with a very small proportion of the foreground pixels. PU learning significantly increases the effective size of the training dataset, improving model performance. Here, we present a PU learning-based strategy for detecting and segmenting mSCTs. We evaluate the performance of two 3D deep learning models, StarDist-3D and 3D U-Net, which are well established for the segmentation of small volumetric structures in microscopy datasets. By integrating PU learning, we enhance the 3D U-Net’s performance, demonstrating significant gains over traditional methods. This work pioneers the application of PU learning in Ca2+ imaging analysis, offering a robust framework for mSCT detection and segmentation. We also demonstrate how this quantitative analysis pipeline can be used for subsequent mSCTs feature analysis. We characterize morphological and kinetic changes of mSCTs associated with the application of chemical long-term potentiation (cLTP) stimulation in cultured rat hippocampal neurons. Our data-driven approach shows that a cLTP-inducing stimulus leads to the emergence of new active dendritic regions and differently affects mSCTs subtypes.
Property-driven AI-automated material discovery presents unique challenges owing to the complex nature of the chemical structural space and … (voir plus)computationally expensive simulations. For crystalline solids, the band gap is an important property for designing semiconductors and batteries. However, optimizing crystals for a target band gap is difficult and not well-explored. Reinforcement learning (RL) shows promise towards optimizing crystals, as it can freely explore the chemical space. However, it relies on regular band gap evaluations, which can only be accurately computed through expensive Density Functional Theory (DFT) simulations. In this study, we propose an active learning-inspired pipeline that combines RL and DFT simulations for optimizing crystal compositions given a target band gap. The pipeline includes an RL policy for predicting atom types and a band gap network that is fine-tuned with DFT data. Preliminary results indicate the need for furthering the state-of-the-art to address the inherent challenges of the problem.
The abundance of data has led to the emergence of a variety of optimization techniques that attempt to leverage available side information t… (voir plus)o provide more anticipative decisions. The wide range of methods and contexts of application have motivated the design of a universal unitless measure of performance known as the coefficient of prescriptiveness. This coefficient was designed to quantify both the quality of contextual decisions compared to a reference one and the prescriptive power of side information. To identify policies that maximize the former in a data-driven context, this paper introduces a distributionally robust contextual optimization model where the coefficient of prescriptiveness substitutes for the classical empirical risk minimization objective. We present a bisection algorithm to solve this model, which relies on solving a series of linear programs when the distributional ambiguity set has an appropriate nested form and polyhedral structure. Studying a contextual shortest path problem, we evaluate the robustness of the resulting policies against alternative methods when the out-of-sample dataset is subject to varying amounts of distribution shift.
2024-07-08
Proceedings of the 41st International Conference on Machine Learning (publié)
This paper addresses the limitations of current satellite payload architectures, which are predominantly hardware-driven and lack the flexib… (voir plus)ility to adapt to increasing data demands and uneven traffic. To overcome these challenges, we present a novel architecture for future regenerative and programmable satellite payloads and utilize interconnected modem banks to promote higher scalability and flexibility. We formulate an optimization problem to efficiently manage traffic among these modem banks and balance the load. Additionally, we provide comparative numerical simulation results, considering end-to-end delay and packet loss analysis. The results illustrate that our proposed architecture maintains lower delays and packet loss even with higher traffic demands and smaller buffer sizes.
We introduce the first model-stealing attack that extracts precise,
nontrivial information from black-box production language models like … (voir plus)OpenAI's ChatGPT or Google's PaLM-2.
Specifically, our attack recovers the embedding projection layer (up to symmetries)
of a transformer model, given typical API access.
For under \\
2024-07-08
Proceedings of the 41st International Conference on Machine Learning (publié)
Value functions are an essential component in deep reinforcement learning (RL), that are typically trained via mean squared error regression… (voir plus) to match bootstrapped target values. However, scaling value-based RL methods to large networks has proven challenging. This difficulty is in stark contrast to supervised learning: by leveraging a cross-entropy classification loss, supervised methods have scaled reliably to massive networks. Observing this discrepancy, in this paper, we investigate whether the scalability of deep RL can also be improved simply by using classification in place of regression for training value functions. We show that training value functions with categorical cross-entropy significantly enhances performance and scalability across various domains, including single-task RL on Atari 2600 games, multi-task RL on Atari with large-scale ResNets, robotic manipulation with Q-transformers, playing Chess without search, and a language-agent Wordle task with high-capacity Transformers, achieving state-of-the-art results on these domains. Through careful analysis, we show that categorical cross-entropy mitigates issues inherent to value-based RL, such as noisy targets and non-stationarity. We argue that shifting to categorical cross-entropy for training value functions can substantially improve the scalability of deep RL at little-to-no cost.
2024-07-08
Proceedings of the 41st International Conference on Machine Learning (publié)