Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo
A wide range of LM applications require generating text that conforms to syntactic or semantic constraints. Imposing such constraints can be… (voir plus) naturally framed as probabilistic conditioning, but exact generation from the resulting distribution—which can differ substantially from the LM’s base distribution—is generally intractable. In this work, we develop an architecture for controlled LM generation based on sequential Monte Carlo (SMC). This SMC framework allows us to flexibly incorporate domain- and problem-specific constraints at inference
time, and efficiently reallocate computational resources in light of new information during the course of generation. By comparing to a number of alternatives and ablations on four challenging domains—Python code generation for data science, text-to-SQL, goal inference, and molecule synthesis—we demonstrate that, with little overhead, our approach allows small open-source language models to outperform models over 8× larger, as well as closed-source, fine-tuned ones. In support of the probabilistic perspective, we show that these performance improvements are driven by better approximation to the posterior distribution. [Our system](https://github.com/probcomp/gen-parse) builds on the framework of Lew et al. (2023) and integrates with its language model probabilistic programming language, giving users a simple, programmable way to apply SMC to a broad variety of controlled generation problems.
A wide range of LM applications require generating text that conforms to syntactic or semantic constraints. Imposing such constraints can be… (voir plus) naturally framed as probabilistic conditioning, but exact generation from the resulting distribution—which can differ substantially from the LM’s base distribution—is generally intractable. In this work, we develop an architecture for controlled LM generation based on sequential Monte Carlo (SMC). This SMC framework allows us to flexibly incorporate domain- and problem-specific constraints at inference
time, and efficiently reallocate computational resources in light of new information during the course of generation. By comparing to a number of alternatives and ablations on four challenging domains—Python code generation for data science, text-to-SQL, goal inference, and molecule synthesis—we demonstrate that, with little overhead, our approach allows small open-source language models to outperform models over 8× larger, as well as closed-source, fine-tuned ones. In support of the probabilistic perspective, we show that these performance improvements are driven by better approximation to the posterior distribution. [Our system](https://github.com/probcomp/genparse) builds on the framework of Lew et al. (2023) and integrates with its language model probabilistic programming language, giving users a simple, programmable way to apply SMC to a broad variety of controlled generation problems.
Weakly supervised object localization (WSOL) using classification models trained with only image-class labels remains an important challenge… (voir plus) in computer vision. Given their reliance on classification objectives, traditional WSOL methods like class activation mapping focus on the most discriminative object parts, often missing the full spatial extent. In contrast, recent WSOL methods based on vision-language models like CLIP require ground truth classes or external classifiers to produce a localization map, limiting their deployment in downstream tasks. Moreover, methods like GenPromp attempt to address these issues but introduce considerable complexity due to their reliance on conditional denoising processes and intricate prompt learning. This paper introduces Text Distillation for Localization (TeD-Loc), an approach that directly distills knowledge from CLIP text embeddings into the model backbone and produces patch-level localization. Multiple instance learning of these image patches allows for accurate localization and classification using one model without requiring external classifiers. Such integration of textual and visual modalities addresses the longstanding challenge of achieving accurate localization and classification concurrently, as WSOL methods in the literature typically converge at different epochs. Extensive experiments show that leveraging text embeddings and localization cues provides a cost-effective WSOL model. TeD-Loc improves Top-1 LOC accuracy over state-of-the-art models by about 5% on both CUB and ILSVRC datasets, while significantly reducing computational complexity compared to GenPromp.
Causal representation learning methods seek to enhance machine learning models' robustness and generalization capabilities by learning laten… (voir plus)t representations and causal graphs aligned with the data generating process. In many systems, fully recovering the true causal structure is challenging because we cannot intervene on all latent variables individually. We introduce a theoretical framework that calculates the degree to which we can identify a causal structure in the more realistic setting of interventions on arbitrary subsets of latent variables. We find that in that case, we can only identify a causal model up to a \emph{causal abstraction}. These causal abstractions are still meaningful in that they describe the system at a higher level of granularity. Conversely, given a causal abstraction, our framework provides sufficient conditions for its identifiability. Our findings extend existing identifiability results in two areas: those that address abstractions of latent variables without considering graphical structures and those that focus on graphical structures without incorporating their abstractions.
Causal representation learning (CRL) enhances machine learning models' robustness and generalizability by learning structural causal models … (voir plus)associated with data-generating processes. We focus on a family of CRL methods that uses contrastive data pairs in the observable space, generated before and after a random, unknown intervention, to identify the latent causal model. (Brehmer et al., 2022) showed that this is indeed possible, given that all latent variables can be intervened on individually. However, this is a highly restrictive assumption in many systems. In this work, we instead assume interventions on arbitrary subsets of latent variables, which is more realistic. We introduce a theoretical framework that calculates the degree to which we can identify a causal model, given a set of possible interventions, up to an abstraction that describes the system at a higher level of granularity.
Pruning eliminates unnecessary parameters in neural networks; it offers a promising solution to the growing computational demands of large l… (voir plus)anguage models (LLMs). While many focus on post-training pruning, sparse pre-training--which combines pruning and pre-training into a single phase--provides a simpler alternative. In this work, we present the first systematic exploration of optimal sparse pre-training configurations for LLMs through an examination of 80 unique pruning schedules across different sparsity levels and training durations. We find that initiating pruning at 25% of total training compute and concluding at 75% achieves near-optimal final evaluation loss. These findings provide valuable insights for efficient and effective sparse pre-training of LLMs. Furthermore, we propose a new scaling law that modifies the Chinchilla scaling law to use the average parameter count over pre-training. Through empirical and theoretical validation, we demonstrate that this modified scaling law accurately models evaluation loss for both sparsely and densely pre-trained LLMs, unifying scaling laws across pre-training paradigms. Our findings indicate that while sparse pre-training achieves the same final model quality as dense pre-training for equivalent compute budgets, it provides substantial benefits through reduced model size, enabling significant potential computational savings during inference.
Neural networks often learn simple explanations that fit the majority of the data while memorizing exceptions that deviate from these explan… (voir plus)ations.This behavior leads to poor generalization when the learned explanations rely on spurious correlations. In this work, we formalize the interplay between memorization and generalization, showing that spurious correlations would particularly lead to poor generalization when are combined with memorization. Memorization can reduce training loss to zero, leaving no incentive to learn robust, generalizable patterns. To address this, we propose memorization-aware training (MAT), which uses held-out predictions as a signal of memorization to shift a model's logits. MAT encourages learning robust patterns invariant across distributions, improving generalization under distribution shifts.
We study the generalization properties of randomly initialized neural networks, under the assumption that the network is larger than some un… (voir plus)known "teacher" network that achieves low risk. We extend the analysis of Buzaglo et al. (2024) to allow for student networks of arbitrary width and depth, and to the setting where no (small) teacher network perfectly interpolates the data. We obtain an oracle inequality, relating the risk of Gibbs posterior sampling to that of narrow teacher networks. As a result, the sample complexity is once again bounded in terms of the size of narrow teacher networks that themselves achieve small risk. We then introduce a new notion of data complexity, based on the minimal size of a teacher network required to achieve a certain level of excess risk. By comparing the scaling laws resulting from our bounds to those observed in empirical studies, we are able to estimate the data complexity of standard benchmarks according to our measure.
We study the generalization properties of randomly initialized neural networks, under the assumption that the network is larger than some un… (voir plus)known "teacher" network that achieves low risk. We extend the analysis of Buzaglo et al. (2024) to allow for student networks of arbitrary width and depth, and to the setting where no (small) teacher network perfectly interpolates the data. We obtain an oracle inequality, relating the risk of Gibbs posterior sampling to that of narrow teacher networks. As a result, the sample complexity is once again bounded in terms of the size of narrow teacher networks that themselves achieve small risk. We then introduce a new notion of data complexity, based on the minimal size of a teacher network required to achieve a certain level of excess risk. By comparing the scaling laws resulting from our bounds to those observed in empirical studies, we are able to estimate the data complexity of standard benchmarks according to our measure.
The goal of object-centric representation learning is to decompose visual scenes into a structured representation that isolates the entities… (voir plus) into individual vectors. Recent successes have shown that object-centric representation learning can be scaled to real-world scenes by utilizing features from pre-trained foundation models like DINO. However, so far, these object-centric methods have mostly been applied in-distribution, with models trained and evaluated on the same dataset. This is in contrast to the underlying foundation models, which have been shown to be applicable to a wide range of data and tasks. Thus, in this work, we answer the question of whether current real-world capable object-centric methods exhibit similar levels of transferability by introducing a benchmark comprising seven different synthetic and real-world datasets. We analyze the factors influencing performance under transfer and find that training on diverse real-world images improves generalization to unseen scenarios. Furthermore, inspired by the success of task-specific fine-tuning in foundation models, we introduce a novel fine-tuning strategy to adapt pre-trained vision encoders for the task of object discovery. We find that the proposed approach results in state-of-the-art performance for unsupervised object discovery, exhibiting strong zero-shot transfer to unseen datasets.
Reinforcement learning (RL) promises a framework for near-universal problem-solving. In practice however, RL algorithms are often tailored t… (voir plus)o specific benchmarks, relying on carefully tuned hyperparameters and algorithmic choices. Recently, powerful model-based RL methods have shown impressive general results across benchmarks but come at the cost of increased complexity and slow run times, limiting their broader applicability. In this paper, we attempt to find a unifying model-free deep RL algorithm that can address a diverse class of domains and problem settings. To achieve this, we leverage model-based representations that approximately linearize the value function, taking advantage of the denser task objectives used by model-based RL while avoiding the costs associated with planning or simulated trajectories. We evaluate our algorithm, MR.Q, on a variety of common RL benchmarks with a single set of hyperparameters and show a competitive performance against domain-specific and general baselines, providing a concrete step towards building general-purpose model-free deep RL algorithms.