Abstract: Würstchen - An Efficient Architecture for Large-scale Text-to-image Diffusion Models
Pablo Pernias
Dominic Rampas
Mats L. Richter
Marc Aubreville
Advocacy for Children With Surgical Diseases in Nigeria: National Policy Status, Gaps, and Solutions
Justina O. Seyi-Olajide
Ayla Gerk
Elena Guadagno
Adesoji Ademuyiwa
Emmanuel A. Ameh
Child- and Proxy-reported Differences in Patient-reported Outcome and Experience Measures in Pediatric Surgery: Systematic Review and Meta-analysis
Zanib Nafees
Siena O'Neill
Alexandra Dimmer
Elena Guadagno
Julia Ferreira
Nancy Mayo
Child- and Proxy-Reported Differences in Patient-Reported Outcome and Experience Measures in Pediatric Surgery: Systematic Review and Meta-Analysis
Zanib Nafees
Siena O’Neill
Alexandra Dimmer
Elena Guadagno
Julia Ferreira
Nancy Mayo
A Distributed ADMM-based Deep Learning Approach for Thermal Control in Multi-Zone Buildings
Vincent Taboga
The surge in electricity use, coupled with the dependency on intermittent renewable energy sources, poses significant hurdles to effectively… (see more) managing power grids, particularly during times of peak demand. Demand Response programs and energy conservation measures are essential to operate energy grids while ensuring a responsible use of our resources This research combines distributed optimization using ADMM with Deep Learning models to plan indoor temperature setpoints effectively. A two-layer hierarchical structure is used, with a central building coordinator at the upper layer and local controllers at the thermal zone layer. The coordinator must limit the building's maximum power by translating the building's total power to local power targets for each zone. Local controllers can modify the temperature setpoints to meet the local power targets. The resulting control algorithm, called Distributed Planning Networks, is designed to be both adaptable and scalable to many types of buildings, tackling two of the main challenges in the development of such systems. The proposed approach is tested on an 18-zone building modeled in EnergyPlus. The algorithm successfully manages Demand Response peak events.
A Distributed ADMM-Based Deep Learning Approach for Thermal Control in Multi-Zone Buildings Under Demand Response Events.
Vincent Taboga
An empirical study of testing machine learning in the wild
Moses Openja
Armstrong Foundjem
Zhen Ming (Jack) Jiang
Mouna Abidi
Ahmed E. Hassan
Background: Recently, machine and deep learning (ML/DL) algorithms have been increasingly adopted in many software systems. Due to their in… (see more)ductive nature, ensuring the quality of these systems remains a significant challenge for the research community. Traditionally, software systems were constructed deductively, by writing explicit rules that govern the behavior of the system as program code. However, ML/DL systems infer rules from training data i.e., they are generated inductively). Recent research in ML/DL quality assurance has adapted concepts from traditional software testing, such as mutation testing, to improve reliability. However, it is unclear if these proposed testing techniques are adopted in practice, or if new testing strategies have emerged from real-world ML deployments. There is little empirical evidence about the testing strategies. Aims: To fill this gap, we perform the first fine-grained empirical study on ML testing in the wild to identify the ML properties being tested, the testing strategies, and their implementation throughout the ML workflow. Method: We conducted a mixed-methods study to understand ML software testing practices. We analyzed test files and cases from 11 open-source ML/DL projects on GitHub. Using open coding, we manually examined the testing strategies, tested ML properties, and implemented testing methods to understand their practical application in building and releasing ML/DL software systems. Results: Our findings reveal several key insights: 1.) The most common testing strategies, accounting for less than 40%, are Grey-box and White-box methods, such as Negative Testing , Oracle Approximation , and Statistical Testing . 2.) A wide range of 17 ML properties are tested, out of which only 20% to 30% are frequently tested, including Consistency , Correctness , and Efficiency . 3.) Bias and Fairness is more tested in Recommendation (6%) and CV (3.9%) systems, while Security & Privacy is tested in CV (2%), Application Platforms (0.9%), and NLP (0.5%). 4.) We identified 13 types of testing methods, such as Unit Testing , Input Testing , and Model Testing . Conclusions: This study sheds light on the current adoption of software testing techniques and highlights gaps and limitations in existing ML testing practices.
Generalization Limits of Graph Neural Networks in Identity Effects Learning
Giuseppe Alessio D’Inverno
Simone Brugiapaglia
Graph Neural Networks (GNNs) have emerged as a powerful tool for data-driven learning on various graph domains. They are usually based on a … (see more)message-passing mechanism and have gained increasing popularity for their intuitive formulation, which is closely linked to the Weisfeiler-Lehman (WL) test for graph isomorphism to which they have been proven equivalent in terms of expressive power. In this work, we establish new generalization properties and fundamental limits of GNNs in the context of learning so-called identity effects, i.e., the task of determining whether an object is composed of two identical components or not. Our study is motivated by the need to understand the capabilities of GNNs when performing simple cognitive tasks, with potential applications in computational linguistics and chemistry. We analyze two case studies: (i) two-letters words, for which we show that GNNs trained via stochastic gradient descent are unable to generalize to unseen letters when utilizing orthogonal encodings like one-hot representations; (ii) dicyclic graphs, i.e., graphs composed of two cycles, for which we present positive existence results leveraging the connection between GNNs and the WL test. Our theoretical analysis is supported by an extensive numerical study.
ICLR 2025 Workshop on Tackling Climate Change with Machine Learning: Data-Centric Approaches in ML for Climate Action
Konstantin Klemmer
Melissa Chapman
Lily Xu
Poon Kin Ho
Mélisande Teng
Patrick Emami
Climate change is one of the greatest problems society has ever faced, with increasingly severe consequences for humanity as natural disaste… (see more)rs multiply, sea levels rise, and ecosystems falter. While no silver bullet, machine learning can be an invaluable tool in fighting climate change via a wide array of applications and techniques, from designing smart electric grids to tracking greenhouse gas emissions through satellite imagery. These applications require algorithmic innovations in machine learning and close collaboration with diverse fields and practitioners. This workshop is intended as a forum for those in the global machine learning community who wish to help tackle climate change, and is further aimed to help foster cross-pollination between researchers in machine learning and experts in complementary climate-relevant fields. Building on our past workshops on this topic, this workshop particularly aims to explore data-centric ML approaches for climate action. Data-centric ML is not only a timely topic within the ICLR community, as analyzing and engineering (pre)training datasets becomes increasingly important, but holds specific challenges and opportunities in climate-related areas. We also want to take the opportunity of ICLR being hosted in Singapore to engage with local communities and shine a light on work that deploys, analyzes or critiques ML methods and their use for climate change adaptation and mitigation on the Asian continent.
An identification of models to help in the design of national strategies and policies to reduce greenhouse gas emissions.
Danielle Maia de Souza
Radhwane Boukelouha
Catherine Morency
Normand Mousseau
Martin Trépanier
An identification of models to help in the design of national strategies and policies to reduce greenhouse gas emissions.
Danielle Maia de Souza
Radhwane Boukelouha
Catherine Morency
Normand Mousseau
Martin Trépanier
Integrating Generative and Experimental Platforms for Biomolecular Design
Cheng-Hao Liu
Jarrid Rector-Brooks
Soojung Yang
Sidney L Lisanza
Francesca-Zhoufan Li
Hannes Stärk
Jacob Gershon
Lauren Hong
Pranam Chatterjee
Tommi Jaakkola
Regina Barzilay
David Baker
Frances H. Arnold
Biomolecular design, through artificial engineering of proteins, ligands, and nucleic acids, holds immense promise in addressing pressing me… (see more)dical, industrial, and environmental challenges. While generative machine learning has shown significant potential in this area, a palpable disconnect exists with experimental biology: many ML research efforts prioritize static benchmark performance, potentially sidelining impactful biological applications. This workshop seeks to bridge this gap by bringing computationalists and experimentalists together, catalyzing a deeper interdisciplinary discourse. Together, we will explore the strengths and challenges of generative ML in biology, experimental integration of generative ML, and biological problems ready for ML. To attract high-quality and diverse research, we partnered with Nature Biotechnology for a special collection, and we created dedicated tracks for in-silico ML research and hybrid ML-experimental biology research. Our lineup features emerging leaders as speakers and renowned scientists as panelists, encapsulating a spectrum from high-throughput experimentation and computational biology to generative ML. With a diverse organizing team and backed by industry sponsors, we dedicate the workshop to pushing the boundaries of ML's role in biology.