Embedding Cultural Diversity in Prototype-based Recommender Systems
Armin Moradi
Nicola Neophytou
Florian Carichon
Popularity bias in recommender systems can increase cultural overrepresentation by favoring norms from dominant cultures and marginalizing u… (see more)nderrepresented groups. This issue is critical for platforms offering cultural products, as they influence consumption patterns and human perceptions. In this work, we address popularity bias by identifying demographic biases within prototype-based matrix factorization methods. Using the country of origin as a proxy for cultural identity, we link this demographic attribute to popularity bias by refining the embedding space learning process. First, we propose filtering out irrelevant prototypes to improve representativity. Second, we introduce a regularization technique to enforce a uniform distribution of prototypes within the embedding space. Across four datasets, our results demonstrate a 27\% reduction in the average rank of long-tail items and a 2\% reduction in the average rank of items from underrepresented countries. Additionally, our model achieves a 2\% improvement in HitRatio@10 compared to the state-of-the-art, highlighting that fairness is enhanced without compromising recommendation quality. Moreover, the distribution of prototypes leads to more inclusive explanations by better aligning items with diverse prototypes.
Embedding Cultural Diversity in Prototype-based Recommender Systems
Armin Moradi
Nicola Neophytou
Florian Carichon
Popularity bias in recommender systems can increase cultural overrepresentation by favoring norms from dominant cultures and marginalizing u… (see more)nderrepresented groups. This issue is critical for platforms offering cultural products, as they influence consumption patterns and human perceptions. In this work, we address popularity bias by identifying demographic biases within prototype-based matrix factorization methods. Using the country of origin as a proxy for cultural identity, we link this demographic attribute to popularity bias by refining the embedding space learning process. First, we propose filtering out irrelevant prototypes to improve representativity. Second, we introduce a regularization technique to enforce a uniform distribution of prototypes within the embedding space. Across four datasets, our results demonstrate a 27\% reduction in the average rank of long-tail items and a 2\% reduction in the average rank of items from underrepresented countries. Additionally, our model achieves a 2\% improvement in HitRatio@10 compared to the state-of-the-art, highlighting that fairness is enhanced without compromising recommendation quality. Moreover, the distribution of prototypes leads to more inclusive explanations by better aligning items with diverse prototypes.
Embedding Cultural Diversity in Prototype-based Recommender Systems
Armin Moradi
Nicola Neophytou
Florian Carichon
Popularity bias in recommender systems can increase cultural overrepresentation by favoring norms from dominant cultures and marginalizing u… (see more)nderrepresented groups. This issue is critical for platforms offering cultural products, as they influence consumption patterns and human perceptions. In this work, we address popularity bias by identifying demographic biases within prototype-based matrix factorization methods. Using the country of origin as a proxy for cultural identity, we link this demographic attribute to popularity bias by refining the embedding space learning process. First, we propose filtering out irrelevant prototypes to improve representativity. Second, we introduce a regularization technique to enforce a uniform distribution of prototypes within the embedding space. Across four datasets, our results demonstrate a 27\% reduction in the average rank of long-tail items and a 2\% reduction in the average rank of items from underrepresented countries. Additionally, our model achieves a 2\% improvement in HitRatio@10 compared to the state-of-the-art, highlighting that fairness is enhanced without compromising recommendation quality. Moreover, the distribution of prototypes leads to more inclusive explanations by better aligning items with diverse prototypes.
Enabling Realtime Reinforcement Learning at Scale with Staggered Asynchronous Inference
Matthew Riemer
Gopeshh Raaj Subbaraj
Realtime environments change even as agents perform action inference and learning, thus requiring high interaction frequencies to effectivel… (see more)y minimize regret. However, recent advances in machine learning involve larger neural networks with longer inference times, raising questions about their applicability in realtime systems where reaction time is crucial. We present an analysis of lower bounds on regret in realtime reinforcement learning (RL) environments to show that minimizing long-term regret is generally impossible within the typical sequential interaction and learning paradigm, but often becomes possible when sufficient asynchronous compute is available. We propose novel algorithms for staggering asynchronous inference processes to ensure that actions are taken at consistent time intervals, and demonstrate that use of models with high action inference times is only constrained by the environment's effective stochasticity over the inference horizon, and not by action frequency. Our analysis shows that the number of inference processes needed scales linearly with increasing inference times while enabling use of models that are multiple orders of magnitude larger than existing approaches when learning from a realtime simulation of Game Boy games such as Pok\'emon and Tetris.
Enabling Realtime Reinforcement Learning at Scale with Staggered Asynchronous Inference
Matthew Riemer
Gopeshh Raaj Subbaraj
Realtime environments change even as agents perform action inference and learning, thus requiring high interaction frequencies to effectivel… (see more)y minimize regret. However, recent advances in machine learning involve larger neural networks with longer inference times, raising questions about their applicability in realtime systems where reaction time is crucial. We present an analysis of lower bounds on regret in realtime reinforcement learning (RL) environments to show that minimizing long-term regret is generally impossible within the typical sequential interaction and learning paradigm, but often becomes possible when sufficient asynchronous compute is available. We propose novel algorithms for staggering asynchronous inference processes to ensure that actions are taken at consistent time intervals, and demonstrate that use of models with high action inference times is only constrained by the environment's effective stochasticity over the inference horizon, and not by action frequency. Our analysis shows that the number of inference processes needed scales linearly with increasing inference times while enabling use of models that are multiple orders of magnitude larger than existing approaches when learning from a realtime simulation of Game Boy games such as Pok\'emon and Tetris.
Inference-Aware Fine-Tuning for Best-of-N Sampling in Large Language Models
Yinlam Chow
Guy Tennenholtz
Izzeddin Gur
Vincent Zhuang
Bo Dai
Sridhar Thiagarajan
Craig Boutilier
Aviral Kumar
Aleksandra Faust
Recent studies have indicated that effectively utilizing inference-time compute is crucial for attaining better performance from large langu… (see more)age models (LLMs). In this work, we propose a novel inference-aware fine-tuning paradigm, in which the model is fine-tuned in a manner that directly optimizes the performance of the inference-time strategy. We study this paradigm using the simple yet effective Best-of-N (BoN) inference strategy, in which a verifier selects the best out of a set of LLM-generated responses. We devise the first imitation learning and reinforcement learning~(RL) methods for BoN-aware fine-tuning, overcoming the challenging, non-differentiable argmax operator within BoN. We empirically demonstrate that our BoN-aware models implicitly learn a meta-strategy that interleaves best responses with more diverse responses that might be better suited to a test-time input -- a process reminiscent of the exploration-exploitation trade-off in RL. Our experiments demonstrate the effectiveness of BoN-aware fine-tuning in terms of improved performance and inference-time compute. In particular, we show that our methods improve the Bo32 performance of Gemma 2B on Hendrycks MATH from 26.8% to 30.8%, and pass@32 from 60.0% to 67.0%, as well as the pass@16 on HumanEval from 61.6% to 67.1%.
MetaMorph: Multimodal Understanding and Generation via Instruction Tuning
Shengbang Tong
David Fan
Jiachen Zhu
Yunyang Xiong
Xinlei Chen
Koustuv Sinha
Yann LeCun
Saining Xie
Zhuang Liu
In this work, we propose Visual-Predictive Instruction Tuning (VPiT) - a simple and effective extension to visual instruction tuning that en… (see more)ables a pretrained LLM to quickly morph into an unified autoregressive model capable of generating both text and visual tokens. VPiT teaches an LLM to predict discrete text tokens and continuous visual tokens from any input sequence of image and text data curated in an instruction-following format. Our empirical investigation reveals several intriguing properties of VPiT: (1) visual generation ability emerges as a natural byproduct of improved visual understanding, and can be unlocked efficiently with a small amount of generation data; (2) while we find understanding and generation to be mutually beneficial, understanding data contributes to both capabilities more effectively than generation data. Building upon these findings, we train our MetaMorph model and achieve competitive performance on both visual understanding and generation. In visual generation, MetaMorph can leverage the world knowledge and reasoning abilities gained from LLM pretraining, and overcome common failure modes exhibited by other generation models. Our results suggest that LLMs may have strong"prior"vision capabilities that can be efficiently adapted to both visual understanding and generation with a relatively simple instruction tuning process.
Online Influence Campaigns: Strategies and Vulnerabilities
Andreea Musulan
Veronica Xia
Ethan Kosak-Hine
Tom Gibbs
Vidya Sujaya
Kellin Pelrine
U. Montr'eal
Ivado
McGill University
In order to combat the creation and spread of harmful content online, this paper defines and contextualizes the concept of inauthentic, soci… (see more)etal-scale manipulation by malicious actors. We review the literature on societally harmful content and how it proliferates to analyze the manipulation strategies used by such actors and the vulnerabilities they target. We also provide an overview of three case studies of extensive manipulation campaigns to emphasize the severity of the problem. We then address the role that Artificial Intelligence plays in the development and dissemination of harmful content, and how its evolution presents new threats to societal cohesion for countries across the globe. Our survey aims to increase our understanding of not just particular aspects of these threats, but also the strategies underlying their deployment, so we can effectively prepare for the evolving cybersecurity landscape.
TRecViT: A Recurrent Video Transformer
Viorica Puatruaucean
Xu Owen He
Joseph Heyward
Chuhan Zhang
Mehdi S. M. Sajjadi
George-Cristian Muraru
Artem Zholus
Mahdi Karami
Yutian Chen 0001
Simon Kayode Osindero
João Carreira
We propose a novel block for video modelling. It relies on a time-space-channel factorisation with dedicated blocks for each dimension: gate… (see more)d linear recurrent units (LRUs) perform information mixing over time, self-attention layers perform mixing over space, and MLPs over channels. The resulting architecture TRecViT performs well on sparse and dense tasks, trained in supervised or self-supervised regimes. Notably, our model is causal and outperforms or is on par with a pure attention model ViViT-L on large scale video datasets (SSv2, Kinetics400), while having
What makes a good metric? Evaluating automatic metrics for text-to-image consistency
Candace Ross
Melissa Hall
Adina Williams
Language models are increasingly being incorporated as components in larger AI systems for various purposes, from prompt optimization to aut… (see more)omatic evaluation. In this work, we analyze the construct validity of four recent, commonly used methods for measuring text-to-image consistency - CLIPScore, TIFA, VPEval, and DSG - which rely on language models and/or VQA models as components. We define construct validity for text-image consistency metrics as a set of desiderata that text-image consistency metrics should have, and find that no tested metric satisfies all of them. We find that metrics lack sufficient sensitivity to language and visual properties. Next, we find that TIFA, VPEval and DSG contribute novel information above and beyond CLIPScore, but also that they correlate highly with each other. We also ablate different aspects of the text-image consistency metrics and find that not all model components are strictly necessary, also a symptom of insufficient sensitivity to visual information. Finally, we show that all three VQA-based metrics likely rely on familiar text shortcuts (such as yes-bias in QA) that call their aptitude as quantitative evaluations of model performance into question.
What makes a good metric? Evaluating automatic metrics for text-to-image consistency
Candace Ross
Melissa Hall
Adina Williams
Language models are increasingly being incorporated as components in larger AI systems for various purposes, from prompt optimization to aut… (see more)omatic evaluation. In this work, we analyze the construct validity of four recent, commonly used methods for measuring text-to-image consistency - CLIPScore, TIFA, VPEval, and DSG - which rely on language models and/or VQA models as components. We define construct validity for text-image consistency metrics as a set of desiderata that text-image consistency metrics should have, and find that no tested metric satisfies all of them. We find that metrics lack sufficient sensitivity to language and visual properties. Next, we find that TIFA, VPEval and DSG contribute novel information above and beyond CLIPScore, but also that they correlate highly with each other. We also ablate different aspects of the text-image consistency metrics and find that not all model components are strictly necessary, also a symptom of insufficient sensitivity to visual information. Finally, we show that all three VQA-based metrics likely rely on familiar text shortcuts (such as yes-bias in QA) that call their aptitude as quantitative evaluations of model performance into question.
Hint Marginalization for Improved Reasoning in Large Language Models
Soumyasundar Pal
Didier Ch'etelat
Yingxue Zhang
Large Language Models (LLMs) have exhibited an impressive capability to perform reasoning tasks, especially if they are encouraged to genera… (see more)te a sequence of intermediate steps. Reasoning performance can be improved by suitably combining multiple LLM responses, generated either in parallel in a single query, or via sequential interactions with LLMs throughout the reasoning process. Existing strategies for combination, such as self-consistency and progressive-hint-prompting, make inefficient usage of the LLM responses. We present Hint Marginalization, a novel and principled algorithmic framework to enhance the reasoning capabilities of LLMs. Our approach can be viewed as an iterative sampling strategy for forming a Monte Carlo approximation of an underlying distribution of answers, with the goal of identifying the mode the most likely answer. Empirical evaluation on several benchmark datasets for arithmetic reasoning demonstrates the superiority of the proposed approach.