Publications

VFA: Vision Frequency Analysis of Foundation Models and Human
Mohammad Javad Darvishi Bayazi
Md Rifat Arefin
Jocelyn Faubert
Machine learning models often struggle with distribution shifts in real-world scenarios, whereas humans exhibit robust adaptation. Models th… (voir plus)at better align with human perception may achieve higher out-of-distribution generalization. In this study, we investigate how various characteristics of large-scale computer vision models influence their alignment with human capabilities and robustness. Our findings indicate that increasing model and data size, along with incorporating rich semantic information and multiple modalities, significantly enhances models' alignment with human perception and their overall robustness. Our empirical analysis demonstrates a strong correlation between out-of-distribution accuracy and human alignment.
Automatic Segmentation of the Spinal Cord Nerve Rootlets
Jan Valošek
Theo Mathieu
Raphaëlle Schlienger
Olivia S. Kowalczyk
Precise identification of spinal nerve rootlets is relevant to delineate spinal levels for the study of functional activity in the spinal co… (voir plus)rd. The goal of this study was to develop an automatic method for the semantic segmentation of spinal nerve rootlets from T2-weighted magnetic resonance imaging (MRI) scans. Images from two open-access MRI datasets were used to train a 3D multi-class convolutional neural network using an active learning approach to segment C2-C8 dorsal nerve rootlets. Each output class corresponds to a spinal level. The method was tested on 3T T2-weighted images from datasets unseen during training to assess inter-site, inter-session, and inter-resolution variability. The test Dice score was 0.67 +- 0.16 (mean +- standard deviation across rootlets levels), suggesting a good performance. The method also demonstrated low inter-vendor and inter-site variability (coefficient of variation= 1.41 %), as well as low inter-session variability (coefficient of variation= 1.30 %) indicating stable predictions across different MRI
A Bayesian Non-Stationary Heteroskedastic Time Series Model for Multivariate Critical Care Data
Zayd Omar
David A. Stephens
Alexandra M. Schmidt
Temperature-dependent Spike-ACE2 interaction of Omicron subvariants is associated with viral transmission
Mehdi Benlarbi
Shilei Ding
Étienne Bélanger
Alexandra Tauzin
Raphael Poujol
Halima Medjahed
Omar El Ferri
Yuxia Bo
Catherine Bourassa
Judith Fafard
Marzena Pazgier
Inès Levade
Cameron Abrams
Marceline Côté
Andrés Finzi
The continued evolution of SARS-CoV-2 requires persistent monitoring of its subvariants. Omicron subvariants are responsible for the vast ma… (voir plus)jority of SARS-CoV-2 infections worldwide, with XBB and BA.2.86 sublineages representing more than 90% of circulating strains as of January 2024. In this study, we characterized the functional properties of Spike glycoproteins from BA.2.75, CH.1.1, DV.7.1, BA.4/5, BQ.1.1, XBB, XBB.1, XBB.1.16, XBB.1.5, FD.1.1, EG.5.1, HK.3 BA.2.86 and JN.1. We tested their capacity to evade plasma-mediated recognition and neutralization, ACE2 binding, their susceptibility to cold inactivation, Spike processing, as well as the impact of temperature on Spike-ACE2 interaction. We found that compared to the early wild-type (D614G) strain, most Omicron subvariants Spike glycoproteins evolved to escape recognition and neutralization by plasma from individuals who received a fifth dose of bivalent (BA.1 or BA.4/5) mRNA vaccine and improve ACE2 binding, particularly at low temperatures. Moreover, BA.2.86 had the best affinity for ACE2 at all temperatures tested. We found that Omicron subvariants Spike processing is associated with their susceptibility to cold inactivation. Intriguingly, we found that Spike-ACE2 binding at low temperature was significantly associated with growth rates of Omicron subvariants in humans. Overall, we report that Spikes from newly emerged Omicron subvariants are relatively more stable and resistant to plasma-mediated neutralization, present improved affinity for ACE2 which is associated, particularly at low temperatures, with their growth rates.
Towards More Realistic Extraction Attacks: An Adversarial Perspective
Yash More
Prakhar Ganesh
169Yb-based high dose rate intensity modulated brachytherapy for focal treatment of prostate cancer
Maude Robitaille
Cynthia Ménard
Gabriel Famulari
Dominic Béliveau-Nadeau
Accelerated Benders Decomposition and Local Branching for Dynamic Maximum Covering Location Problems
Steven Lamontagne
Ribal Atallah
The maximum covering location problem (MCLP) is a key problem in facility location, with many applications and variants. One such variant is… (voir plus) the dynamic (or multi-period) MCLP, which considers the installation of facilities across multiple time periods. To the best of our knowledge, no exact solution method has been proposed to tackle large-scale instances of this problem. To that end, in this work, we expand upon the current state-of-the-art branch-and-Benders-cut solution method in the static case, by exploring several acceleration techniques. Additionally, we propose a specialised local branching scheme, that uses a novel distance metric in its definition of subproblems and features a new method for efficient and exact solving of the subproblems. These methods are then compared through extensive computational experiments, highlighting the strengths of the proposed methodologies.
Expressivity of Neural Networks with Random Weights and Learned Biases
Ezekiel Williams
Avery Hee-Woon Ryoo
Thomas Jiralerspong
Alexandre Payeur
Luca Mazzucato
Imagining a Future of Designing with AI: Dynamic Grounding, Constructive Negotiation, and Sustainable Motivation
Priyan Vaithilingam
Elena L. Glassman
Do LLMs Meet the Needs of Software Tutorial Writers? Opportunities and Design Implications
Avinash Bhat
Disha Shrivastava
Creating software tutorials involves developing accurate code examples and explanatory text that engages and informs the reader. Large Langu… (voir plus)age Models (LLMs) demonstrate a strong capacity to generate both text and code, but their potential to assist tutorial writing is unknown. By interviewing and observing seven experienced writers using OpenAI playground as an exploration environment, we uncover design opportunities for leveraging LLMs in software tutorial writing. Our findings reveal background research, resource creation, and maintaining quality standards as critical areas where LLMs could significantly assist writers. We observe how tutorial writers generated tutorial content while exploring LLMs’ capabilities, formulating prompts, verifying LLM outputs, and reflecting on interaction goals and strategies. Our observation highlights that the unpredictability of LLM outputs and unintuitive interface design contributed to skepticism about LLM’s utility. Informed by these results, we contribute recommendations for designing LLM-based tutorial writing tools to mitigate usability challenges and harness LLMs’ full potential.
A logistics provider’s profit maximization facility location problem with random utility maximizing followers
David Pinzon Ulloa
Bernard Gendron
Motivating Users to Attend to Privacy: A Theory-Driven Design Study
Varun Shiri
Maggie Xiong
Jinghui Cheng
In modern technology environments, raising users’ privacy awareness is crucial. Existing efforts largely focused on privacy policy present… (voir plus)ation and failed to systematically address a radical challenge of user motivation for initiating privacy awareness. Leveraging the Protection Motivation Theory (PMT), we proposed design ideas and categories dedicated to motivating users to engage with privacy-related information. Using these design ideas, we created a conceptual prototype, enhancing the current App Store product page. Results from an online experiment and follow-up interviews showed that our design effectively motivated participants to attend to privacy issues, raising both the threat appraisal and coping appraisal, two main factors in PMT. Our work indicated that effective design should consider combining PMT components, calibrating information content, and integrating other design elements, such as visual cues and user familiarity. Overall, our study contributes valuable design considerations driven by the PMT to amplify the motivational aspect of privacy communication.