Publications

PhyloGFN: Phylogenetic inference with generative flow networks
Ming Yang Zhou
Zichao Yan
Elliot Layne
Nikolay Malkin
Dinghuai Zhang
Moksh J. Jain
Piecewise Linear Parametrization of Policies: Towards Interpretable Deep Reinforcement Learning
Maxime Wabartha
Learning inherently interpretable policies is a central challenge in the path to developing autonomous agents that humans can trust. Linear … (voir plus)policies can justify their decisions while interacting in a dynamic environment, but their reduced expressivity prevents them from solving hard tasks. Instead, we argue for the use of piecewise-linear policies. We carefully study to what extent they can retain the interpretable properties of linear policies while reaching competitive performance with neural baselines. In particular, we propose the HyperCombinator (HC), a piecewise-linear neural architecture expressing a policy with a controllably small number of sub-policies. Each sub-policy is linear with respect to interpretable features, shedding light on the decision process of the agent without requiring an additional explanation model. We evaluate HC policies in control and navigation experiments, visualize the improved interpretability of the agent and highlight its trade-off with performance. Moreover, we validate that the restricted model class that the HyperCombinator belongs to is compatible with the algorithmic constraints of various reinforcement learning algorithms.
Piecewise Linear Parametrization of Policies: Towards Interpretable Deep Reinforcement Learning
Maxime Wabartha
Poly-View Contrastive Learning
Amitis Shidani
Jason Ramapuram
Russell Webb
Eeshan Gunesh Dhekane
Dan Busbridge
Pre-Training and Fine-Tuning Generative Flow Networks
Ling Pan
Moksh J. Jain
Kanika Madan
Generative Flow Networks (GFlowNets) are amortized samplers that learn stochastic policies to sequentially generate compositional objects fr… (voir plus)om a given unnormalized reward distribution. They can generate diverse sets of high-reward objects, which is an important consideration in scientific discovery tasks. However, as they are typically trained from a given extrinsic reward function, it remains an important open challenge about how to leverage the power of pre-training and train GFlowNets in an unsupervised fashion for efficient adaptation to downstream tasks. Inspired by recent successes of unsupervised pre-training in various domains, we introduce a novel approach for reward-free pre-training of GFlowNets. By framing the training as a self-supervised problem, we propose an outcome-conditioned GFlowNet (OC-GFN) that learns to explore the candidate space. Specifically, OC-GFN learns to reach any targeted outcomes, akin to goal-conditioned policies in reinforcement learning. We show that the pre-trained OC-GFN model can allow for a direct extraction of a policy capable of sampling from any new reward functions in downstream tasks. Nonetheless, adapting OC-GFN on a downstream task-specific reward involves an intractable marginalization over possible outcomes. We propose a novel way to approximate this marginalization by learning an amortized predictor enabling efficient fine-tuning. Extensive experimental results validate the efficacy of our approach, demonstrating the effectiveness of pre-training the OC-GFN, and its ability to swiftly adapt to downstream tasks and discover modes more efficiently. This work may serve as a foundation for further exploration of pre-training strategies in the context of GFlowNets.
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. Rupam Mahmood
Animashree Anandkumar
Kamyar Azizzadenesheli
We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL). One of the key shortcom… (voir plus)ings of existing Thompson sampling algorithms is the need to perform a Gaussian approximation of the posterior distribution, which is not a good surrogate in most practical settings. We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo, an efficient type of Markov Chain Monte Carlo (MCMC) method. Our method only needs to perform noisy gradient descent updates to learn the exact posterior distribution of the Q function, which makes our approach easy to deploy in deep RL. We provide a rigorous theoretical analysis for the proposed method and demonstrate that, in the linear Markov decision process (linear MDP) setting, it has a regret bound of
Raidar: geneRative AI Detection viA Rewriting
Carl Vondrick
Hao Wang
Junfeng Yang
We find that large language models (LLMs) are more likely to modify human-written text than AI-generated text when tasked with rewriting. Th… (voir plus)is tendency arises because LLMs often perceive AI-generated text as high-quality, leading to fewer modifications. We introduce a method to detect AI-generated content by prompting LLMs to rewrite text and calculating the editing distance of the output. We dubbed our geneRative AI Detection viA Rewriting method Raidar. Raidar significantly improves the F1 detection scores of existing AI content detection models -- both academic and commercial -- across various domains, including News, creative writing, student essays, code, Yelp reviews, and arXiv papers, with gains of up to 29 points. Operating solely on word symbols without high-dimensional features, our method is compatible with black box LLMs, and is inherently robust on new content. Our results illustrate the unique imprint of machine-generated text through the lens of the machines themselves.
Reasoning with Latent Diffusion in Offline Reinforcement Learning
Siddarth Venkatraman
Shivesh Khaitan
Ravi Tej Akella
John Dolan
Jeff Schneider
Reasoning with Latent Diffusion in Offline Reinforcement Learning
Siddarth Venkatraman
Shivesh Khaitan
Ravi Tej Akella
John Dolan
Jeff Schneider
Reward Model Ensembles Help Mitigate Overoptimization
Thomas Coste
Usman Anwar
Robert Kirk
Reinforcement learning from human feedback (RLHF) is a standard approach for fine-tuning large language models to follow instructions. As pa… (voir plus)rt of this process, learned reward models are used to approximately model human preferences. However, as imperfect representations of the “true” reward, these learned reward models are susceptible to overoptimization. Gao et al. (2023) studied this phenomenon in a synthetic human feedback setup with a significantly larger “gold” reward model acting as the true reward (instead of humans) and showed that overoptimization remains a persistent problem regardless of the size of the proxy reward model and training data used. Using a similar setup, we conduct a systematic study to evaluate the efficacy of using ensemble-based conservative optimization objectives, specifically worst-case optimization (WCO) and uncertainty-weighted optimization (UWO), for mitigating reward model overoptimization when using two optimization methods: (a) best-of-n sampling (BoN) (b) proximal policy optimization (PPO). We additionally extend the setup of Gao et al. (2023) to include 25% label noise to better mirror real-world conditions. Both with and without label noise we find that conservative optimization practically eliminates overoptimization and improves performance by up to 70% for BoN sampling. For PPO, ensemble-based conservative optimization always reduces overoptimization and outperforms single reward model optimization. Moreover, combining it with a small KL penalty successfully prevents overoptimization at no performance cost. Overall, our results demonstrate that ensemble-based conservative optimization can effectively counter overoptimization.
Searching for High-Value Molecules Using Reinforcement Learning and Transformers
Raj Ghugare
Santiago Miret
Adriana Hugessen
Mariano Phielipp
Str2Str: A Score-based Framework for Zero-shot Protein Conformation Sampling
Jiarui Lu
Bozitao Zhong
Zuobai Zhang