Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining
Molecule pretraining has quickly become the go-to schema to boost the performance of AI-based drug discovery. Naturally, molecules can be re… (voir plus)presented as 2D topological graphs or 3D geometric point clouds. Although most existing pertaining methods focus on merely the single modality, recent research has shown that maximizing the mutual information (MI) between such two modalities enhances the molecule representation ability. Meanwhile, existing molecule multi-modal pretraining approaches approximate MI based on the representation space encoded from the topology and geometry, thus resulting in the loss of critical structural information of molecules. To address this issue, we propose MoleculeSDE. MoleculeSDE leverages group symmetric (e.g., SE(3)-equivariant and reflection-antisymmetric) stochastic differential equation models to generate the 3D geometries from 2D topologies, and vice versa, directly in the input space. It not only obtains tighter MI bound but also enables prosperous downstream tasks than the previous work. By comparing with 17 pretraining baselines, we empirically verify that MoleculeSDE can learn an expressive representation with state-of-the-art performance on 26 out of 32 downstream tasks.
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (publié)
Cell-type composition is an important indicator of health. We present Guided Topic Model for deconvolution (GTM-decon) to automatically infe… (voir plus)r cell-type-specific gene topic distributions from single-cell RNA-seq data for deconvolving bulk transcriptomes. GTM-decon performs competitively on deconvolving simulated and real bulk data compared with the state-of-the-art methods. Moreover, as demonstrated in deconvolving disease transcriptomes, GTM-decon can infer multiple cell-type-specific gene topic distributions per cell type, which captures sub-cell-type variations. GTM-decon can also use phenotype labels from single-cell or bulk data as a guide to infer phenotype-specific gene distributions. In a nested-guided design, GTM-decon identified cell-type-specific differentially expressed genes from bulk breast cancer transcriptomes.
During the recent years the interest of optimization and machine learning communities in high-probability convergence of stochastic optimiza… (voir plus)tion methods has been growing. One of the main reasons for this is that high-probability complexity bounds are more accurate and less studied than in-expectation ones. However, SOTA high-probability non-asymptotic convergence results are derived under strong assumptions such as boundedness of the gradient noise variance or of the objective’s gradient itself. In this paper, we propose several algorithms with high-probability convergence results under less restrictive assumptions. In particular, we derive new high-probability convergence results under the assumption that the gradient/operator noise has bounded central
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (publié)
Although data diffusion embeddings are ubiquitous in unsupervised learning and have proven to be a viable technique for uncovering the under… (voir plus)lying intrinsic geometry of data, diffusion embeddings are inherently limited due to their discrete nature. To this end, we propose neural FIM, a method for computing the Fisher information metric (FIM) from point cloud data - allowing for a continuous manifold model for the data. Neural FIM creates an extensible metric space from discrete point cloud data such that information from the metric can inform us of manifold characteristics such as volume and geodesics. We demonstrate Neural FIM’s utility in selecting parameters for the PHATE visualization method as well as its ability to obtain information pertaining to local volume illuminating branching points and cluster centers embeddings of a toy dataset and two single-cell datasets of IPSC reprogramming and PBMCs (immune cells).
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (publié)
Current protein language models (PLMs) learn protein representations mainly based on their sequences, thereby well capturing co-evolutionary… (voir plus) information, but they are unable to explicitly acquire protein functions, which is the end goal of protein representation learning. Fortunately, for many proteins, their textual property descriptions are available, where their various functions are also described. Motivated by this fact, we first build the ProtDescribe dataset to augment protein sequences with text descriptions of their functions and other important properties. Based on this dataset, we propose the ProtST framework to enhance Protein Sequence pre-training and understanding by biomedical Texts. During pre-training, we design three types of tasks, i.e., unimodal mask prediction, multimodal representation alignment and multimodal mask prediction, to enhance a PLM with protein property information with different granularities and, at the same time, preserve the PLM’s original representation power. On downstream tasks, ProtST enables both supervised learning and zero-shot prediction. We verify the superiority of ProtST-induced PLMs over previous ones on diverse representation learning benchmarks. Under the zero-shot setting, we show the effectiveness of ProtST on zero-shot protein classification, and ProtST also enables functional protein retrieval from a large-scale database without any function annotation.
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (publié)
Multivariate probabilistic time series forecasts are commonly evaluated via proper scoring rules, i.e., functions that are minimal in expect… (voir plus)ation for the ground-truth distribution. However, this property is not sufficient to guarantee good discrimination in the non-asymptotic regime. In this paper, we provide the first systematic finite-sample study of proper scoring rules for time-series forecasting evaluation. Through a power analysis, we identify the"region of reliability"of a scoring rule, i.e., the set of practical conditions where it can be relied on to identify forecasting errors. We carry out our analysis on a comprehensive synthetic benchmark, specifically designed to test several key discrepancies between ground-truth and forecast distributions, and we gauge the generalizability of our findings to real-world tasks with an application to an electricity production problem. Our results reveal critical shortcomings in the evaluation of multivariate probabilistic forecasts as commonly performed in the literature.
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (publié)