Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Publications
Regions of Reliability in the Evaluation of Multivariate Probabilistic Forecasts
Multivariate probabilistic time series forecasts are commonly evaluated via proper scoring rules, i.e., functions that are minimal in expect… (voir plus)ation for the ground-truth distribution. However, this property is not sufficient to guarantee good discrimination in the non-asymptotic regime. In this paper, we provide the first systematic finite-sample study of proper scoring rules for time-series forecasting evaluation. Through a power analysis, we identify the"region of reliability"of a scoring rule, i.e., the set of practical conditions where it can be relied on to identify forecasting errors. We carry out our analysis on a comprehensive synthetic benchmark, specifically designed to test several key discrepancies between ground-truth and forecast distributions, and we gauge the generalizability of our findings to real-world tasks with an application to an electricity production problem. Our results reveal critical shortcomings in the evaluation of multivariate probabilistic forecasts as commonly performed in the literature.
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (publié)
Uncertain Evidence in Probabilistic Models and Stochastic Simulators
Andreas Munk
Alexander Mead
Frank Wood
We consider the problem of performing Bayesian inference in probabilistic models where observations are accompanied by uncertainty, referred… (voir plus) to as "uncertain evidence.'' We explore how to interpret uncertain evidence, and by extension the importance of proper interpretation as it pertains to inference about latent variables. We consider a recently-proposed method "distributional evidence'' as well as revisit two older methods: Jeffrey's rule and virtual evidence. We devise guidelines on how to account for uncertain evidence and we provide new insights, particularly regarding consistency. To showcase the impact of different interpretations of the same uncertain evidence, we carry out experiments in which one interpretation is defined as "correct.'' We then compare inference results from each different interpretation illustrating the importance of careful consideration of uncertain evidence.
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (publié)
Slot attention is a powerful method for object-centric modeling in images and videos. However, its set-equivariance limits its ability to ha… (voir plus)ndle videos with a dynamic number of objects because it cannot break ties. To overcome this limitation, we first establish a connection between slot attention and optimal transport. Based on this new perspective we propose **MESH** (Minimize Entropy of Sinkhorn): a cross-attention module that combines the tiebreaking properties of unregularized optimal transport with the speed of regularized optimal transport. We evaluate slot attention using MESH on multiple object-centric learning benchmarks and find significant improvements over slot attention in every setting.
2023-07-03
Proceedings of the 40th International Conference on Machine Learning (publié)
Stochastic min-max optimization has gained interest in the machine learning community with the advancements in GANs and adversarial training… (voir plus). Although game optimization is fairly well understood in the deterministic setting, some issues persist in the stochastic regime. Recent work has shown that stochastic gradient descent-ascent methods such as the optimistic gradient are highly sensitive to noise or can fail to converge. Although alternative strategies exist, they can be prohibitively expensive. We introduce Omega, a method with optimistic-like updates that mitigates the impact of noise by incorporating an EMA of historic gradients in its update rule. We also explore a variation of this algorithm that incorporates momentum. Although we do not provide convergence guarantees, our experiments on stochastic games show that Omega outperforms the optimistic gradient method when applied to linear players.
The potential of automatic code generation through Model-Driven Engineering (MDE) frameworks has yet to be realized. Beyond their ability to… (voir plus) help software professionals write more accurate, reusable code, MDE frameworks could make programming accessible for a new class of domain experts. However, domain experts have been slow to embrace these tools, as they still need to learn how to specify their applications' requirements using the concrete syntax (i.e., textual or graphical) of the new and unified domain-specific language. Conversational interfaces (chatbots) could smooth the learning process and offer a more interactive way for domain experts to specify their application requirements and generate the desired code. If integrated with MDE frameworks, chatbots may offer domain experts with richer domain vocabulary without sacrificing the power of agnosticism that unified modelling frameworks provide. In this paper, we discuss the challenges of integrating chatbots within MDE frameworks and then examine a specific application: the auto-generation of smart contract code based on conversational syntax. We demonstrate how this can be done and evaluate our approach by conducting a user experience survey to assess the usability and functionality of the chatbot framework. The paper concludes by drawing attention to the potential benefits of leveraging Language Models (LLMs) in this context.
2023-07-01
2023 IEEE International Conference on Software Services Engineering (SSE) (publié)
Curriculum frameworks and educational programs in artificial intelligence for medical students, residents, and practicing physicians: a scoping review protocol.
OBJECTIVE
The aim of this scoping review is to synthesize knowledge from the literature on curriculum frameworks and current educational pro… (voir plus)grams that focus on the teaching and learning of artificial intelligence (AI) for medical students, residents, and practicing physicians.
INTRODUCTION
To advance the implementation of AI in clinical practice, physicians need to have a better understanding of AI and how to use it within clinical practice. Consequently, medical education must introduce AI topics and concepts into the curriculum. Curriculum frameworks are educational road maps to teaching and learning. Therefore, any existing AI curriculum frameworks must be reviewed and, if none exist, such a framework must be developed.
INCLUSION CRITERIA
This review will include articles that describe curriculum frameworks for teaching and learning AI in medicine, irrespective of country. All types of articles and study designs will be included, except conference abstracts and protocols.
METHODS
This review will follow the JBI methodology for scoping reviews. Keywords will first be identified from relevant articles. Another search will then be conducted using the identified keywords and index terms. The following databases will be searched: MEDLINE (Ovid), Embase (Ovid), Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL (EBSCOhost), and Scopus. Gray literature will also be searched. Articles will be limited to the English and French languages, commencing from the year 2000. The reference lists of all included articles will be screened for additional articles. Data will then be extracted from included articles and the results will be presented in a table.