Publications

Assessing the Quality of Direct-to-Consumer Teleconsultation Services in Canada
Jean Noel Nikiema
Eleah Stringer
Marie-Pierre Moreault
Priscille Pana
Marco Laverdiere
Jean-Louis Denis
Béatrice Godard
Mylaine Breton
Guy Paré
Aviv Shachak
Claudia Lai
Elizabeth M. Borycki
Andre W. Kushniruk
Aude Motulsky
A Conceptual Framework for Representing Events Under Public Health Surveillance
Anya Okhmatovskaia
Yannan Shen
Iris Ganser
Nigel Collier
Nicholas B King
Zaiqiao Meng
Information integration across multiple event-based surveillance (EBS) systems has been shown to improve global disease surveillance in expe… (voir plus)rimental settings. In practice, however, integration does not occur due to the lack of a common conceptual framework for encoding data within EBS systems. We aim to address this gap by proposing a candidate conceptual framework for representing events and related concepts in the domain of public health surveillance.
MaskEval: Weighted MLM-Based Evaluation for Text Summarization and Simplification
Yu Lu Liu
Rachel Bawden
Thomas Scaliom
Benoı̂t Sagot
ASHA: Assistive Teleoperation via Human-in-the-Loop Reinforcement Learning
Sean Chen
Jensen Gao
Siddharth Reddy
Anca Dragan
Sergey Levine
Building assistive interfaces for controlling robots through arbitrary, high-dimensional, noisy inputs (e.g., webcam images of eye gaze) can… (voir plus) be challenging, especially when it involves inferring the user's desired action in the absence of a natural ‘default’ interface. Reinforcement learning from online user feedback on the system's performance presents a natural solution to this problem, and enables the interface to adapt to individual users. However, this approach tends to require a large amount of human-in-the-loop training data, especially when feedback is sparse. We propose a hierarchical solution that learns efficiently from sparse user feedback: we use offline pre-training to acquire a latent embedding space of useful, high-level robot behaviors, which, in turn, enables the system to focus on using online user feedback to learn a mapping from user inputs to desired high-level behaviors. The key insight is that access to a pre-trained policy enables the system to learn more from sparse rewards than a naïve RL algorithm: using the pre-trained policy, the system can make use of successful task executions to relabel, in hindsight, what the user actually meant to do during unsuccessful executions. We evaluate our method primarily through a user study with 12 participants who perform tasks in three simulated robotic manipulation domains using a webcam and their eye gaze: flipping light switches, opening a shelf door to reach objects inside, and rotating a valve. The results show that our method successfully learns to map 128-dimensional gaze features to 7-dimensional joint torques from sparse rewards in under 10 minutes of online training, and seamlessly helps users who employ different gaze strategies, while adapting to distributional shift in webcam inputs, tasks, and environments
Improving Source Separation by Explicitly Modeling Dependencies between Sources
Ethan Manilow
Curtis Hawthorne
Bryan Pardo
Jesse Engel
We propose a new method for training a supervised source separation system that aims to learn the interdependent relationships between all c… (voir plus)ombinations of sources in a mixture. Rather than independently estimating each source from a mix, we reframe the source separation problem as an Orderless Neural Autoregressive Density Estimator (NADE), and estimate each source from both the mix and a random subset of the other sources. We adapt a standard source separation architecture, Demucs, with additional inputs for each individual source, in addition to the input mixture. We randomly mask these input sources during training so that the network learns the conditional dependencies between the sources. By pairing this training method with a blocked Gibbs sampling procedure at inference time, we demonstrate that the network can iteratively improve its separation performance by conditioning a source estimate on its earlier source estimates. Experiments on two source separation datasets show that training a Demucs model with an Orderless NADE approach and using Gibbs sampling (up to 512 steps) at inference time strongly outperforms a Demucs baseline that uses a standard regression loss and direct (one step) estimation of sources.
Real-M: Towards Speech Separation on Real Mixtures
Samuele Cornell
François Grondin
In recent years, deep learning based source separation has achieved impressive results. Most studies, however, still evaluate separation mod… (voir plus)els on synthetic datasets, while the performance of state-of-the-art techniques on in-the-wild speech data remains an open question. This paper contributes to fill this gap in two ways. First, we release the REAL-M dataset, a crowd-sourced corpus of real-life mixtures. Secondly, we address the problem of performance evaluation of real-life mixtures, where the ground truth is not available. We bypass this issue by carefully designing a blind Scale-Invariant Signal-to-Noise Ratio (SI-SNR) neural estimator. Through a user study, we show that our estimator reliably evaluates the separation performance on real mixtures, i.e. we observe that the performance predictions of the SI-SNR estimator correlate well with human opinions. Moreover, when evaluating popular speech separation models, we observe that the performance trends predicted by our estimator on the REAL-M dataset closely follow the performance trends achieved on synthetic benchmarks.
A Remedy For Distributional Shifts Through Expected Domain Translation
Jean-Christophe Gagnon-Audet
Soroosh Shahtalebi
Frank Rudzicz
Machine learning models often fail to generalize to unseen domains due to the distributional shifts. A family of such shifts, “correlation… (voir plus) shifts,” is caused by spurious correlations in the data. It is studied under the overarching topic of “domain generalization.” In this work, we employ multi-modal translation networks to tackle the correlation shifts that appear when data is sampled out-of-distribution. Learning a generative model from training domains enables us to translate each training sample under the special characteristics of other possible domains. We show that by training a predictor solely on the generated samples, the spurious correlations in training domains average out, and the invariant features corresponding to true correlations emerge. Our proposed technique, Expected Domain Translation (EDT), is benchmarked on the Colored MNIST dataset and drastically improves the state-of-the-art classification accuracy by 38% with train-domain validation model selection.
Roboethics as a Design Challenge: Lessons Learned from the Roboethics to Design and Development Competition
Jimin Rhim
Cheng Lin
Alexander Werner
Brandon DeHart
Vivian Qiang
Shalaleh Rismani
How do we make concrete progress towards de-signing robots that can navigate ethically sensitive contexts? Almost two decades after the word… (voir plus) ‘roboethics’ was coined, translating interdisciplinary roboethics discussions into techni-cal design still remains a daunting task. This paper describes our first attempt at addressing these challenges through a roboethics-themed design competition. The design competition setting allowed us to (a) formulate ethical considerations as an engineering design task that anyone with basic programming skills can tackle; and (b) develop a prototype evaluation scheme that incorporates diverse normative perspectives of multiple stakeholders. The initial implementation of the competition was held online at the RO-MAN 2021 conference. The competition task involved programming a simulated mobile robot (TIAGo) that delivers items for individuals in the home environment, where many of these tasks involve ethically sensitive con-texts (e.g., an underage family member asks for an alcoholic drink). This paper outlines our experiences implementing the competition and the lessons we learned. We highlight design competitions as a promising mechanism to enable a new wave of roboethics research equipped with technical design solutions.
Better Modeling the Programming World with Code Concept Graphs-augmented Multi-modal Learning
Martin Weyssow
Houari Sahraoui
The progress made in code modeling has been tremendous in recent years thanks to the design of natural language processing learning approach… (voir plus)es based on state-of-the-art model architectures. Nevertheless, we believe that the current state-of-the-art does not focus enough on the full potential that data may bring to a learning process in software engineering. Our vision articulates on the idea of leveraging multi-modal learning approaches to modeling the programming world. In this paper, we investigate one of the underlying idea of our vision whose objective based on concept graphs of identifiers aims at leveraging high-level relationships between domain concepts manipulated through particular language constructs. In particular, we propose to enhance an existing pretrained language model of code by joint-learning it with a graph neural network based on our concept graphs. We conducted a preliminary evaluation that shows gain of effectiveness of the models for code search using a simple joint-learning method and prompts us to further investigate our research vision.
Hardware Architecture for Guessing Random Additive Noise Decoding Markov Order (GRAND-MO)
Syed Mohsin Abbas
Marwan Jalaleddine
Privacy-Aware Compression for Federated Data Analysis
Kamalika Chaudhuri
Chuan Guo
Federated data analytics is a framework for distributed data analysis where a server compiles noisy responses from a group of distributed lo… (voir plus)w-bandwidth user devices to estimate aggregate statistics. Two major challenges in this framework are privacy, since user data is often sensitive, and compression, since the user devices have low network bandwidth. Prior work has addressed these challenges separately by combining standard compression algorithms with known privacy mechanisms. In this work, we take a holistic look at the problem and design a family of privacy-aware compression mechanisms that work for any given communication budget. We first propose a mechanism for transmitting a single real number that has optimal variance under certain conditions. We then show how to extend it to metric differential privacy for location privacy use-cases, as well as vectors, for application to federated learning. Our experiments illustrate that our mechanism can lead to better utility vs. compression trade-offs for the same privacy loss in a number of settings.
Temporal Abstractions-Augmented Temporally Contrastive Learning: An Alternative to the Laplacian in RL
Akram Erraqabi
Marlos C. Machado
Harry Zhao
Mingde Zhao
Sainbayar Sukhbaatar
Alessandro Lazaric
Ludovic Denoyer
In reinforcement learning, the graph Laplacian has proved to be a valuable tool in the task-agnostic setting, with applications ranging from… (voir plus) skill discovery to reward shaping. Recently, learning the Laplacian representation has been framed as the optimization of a temporally-contrastive objective to overcome its computational limitations in large (or continuous) state spaces. However, this approach requires uniform access to all states in the state space, overlooking the exploration problem that emerges during the representation learning process. In this work, we propose an alternative method that is able to recover, in a non-uniform-prior setting, the expressiveness and the desired properties of the Laplacian representation. We do so by combining the representation learning with a skill-based covering policy, which provides a better training distribution to extend and refine the representation. We also show that a simple augmentation of the representation objective with the learned temporal abstractions improves dynamics-awareness and helps exploration. We find that our method succeeds as an alternative to the Laplacian in the non-uniform setting and scales to challenging continuous control environments. Finally, even if our method is not optimized for skill discovery, the learned skills can successfully solve difficult continuous navigation tasks with sparse rewards, where standard skill discovery approaches are no so effective.