Learning Conditional Policies for Crystal Design Using Offline Reinforcement Learning
Prashant Govindarajan
Santiago Miret
Jarrid Rector-Brooks
Mariano Phielipp
Janarthanan Rajendran
Navigating through the exponentially large chemical space to search for desirable materials is an extremely challenging task in material dis… (voir plus)covery. Recent developments in generative and geometric deep learning have shown...
Learning Lagrangian Multipliers for the Travelling Salesman Problem
Augustin Parjadis
Bistra Dilkina
Aaron M. Ferber
Louis-Martin Rousseau
Learning Precedences for Scheduling Problems with Graph Neural Networks
Hélène Verhaeghe
Gilles Pesant
Claude-Guy Quimper
Learning to repeatedly solve routing problems
Mouad Morabit
Guy Desaulniers
Andrea Lodi
In the last years, there has been a great interest in machine‐learning‐based heuristics for solving NP‐hard combinatorial optimization… (voir plus) problems. The developed methods have shown potential on many optimization problems. In this paper, we present a learned heuristic for the reoptimization of a problem after a minor change in its data. We focus on the case of the capacited vehicle routing problem with static clients (i.e., same client locations) and changed demands. Given the edges of an original solution, the goal is to predict and fix the ones that have a high chance of remaining in an optimal solution after a change of client demands. This partial prediction of the solution reduces the complexity of the problem and speeds up its resolution, while yielding a good quality solution. The proposed approach resulted in solutions with an optimality gap ranging from 0% to 1.7% on different benchmark instances within a reasonable computing time.
Learning Tabu Search Algorithms: A Scheduling Application
Nazgol Niroumandrad
Nadia Lahrichi
Andrea Lodi
. Metaheuristics are widely recognized as efficient approaches for many combinatorial problems. Studies to improve the performance of metahe… (voir plus)uristics have increasingly relied on the use of various methods either combining different metaheuristics or methods originating outside of the metaheuristic field. This paper presents a learning algorithm to improve tabu search by reducing its search space and the evaluation effort. We study the performance of a learning tabu search algorithm using classification methods in an attempt to select moves through the search space more wisely. The experimental results demonstrate the benefit of using a learning mechanism under deterministic and stochastic conditions.
Learning the Game: Decoding the Differences between Novice and Expert Players in a Citizen Science Game with Millions of Players
Eddie Cai
Roman Sarrazin-Gendron
Renata Mutalova
Parham Ghasemloo Gheidari
Alexander Butyaev
Gabriel Richard
Sébastien Caisse
Rob Knight
Attila Szantner
Jérôme Waldispühl
On learning Whittle index policy for restless bandits with scalable regret
Nima Akbarzadeh
Reinforcement learning is an attractive approach to learn good resource allocation and scheduling policies based on data when the system mod… (voir plus)el is unknown. However, the cumulative regret of most RL algorithms scales as ˜ O(S
List Comprehension Versus for Loops Performance in Real Python Projects: Should we Care?
Cyrine Zid
François Belias
Massimiliano Di Penta
Giuliano Antoniol
List comprehensions are a Pythonic functional construct allowing developers to express in a concise way loops to build and manipulate lists.… (voir plus) Previous studies point to a gain in speed when list comprehensions are adopted. This paper reports the results of a study that compares the execution time performance of Python code written using list comprehensions as opposed to equivalent imperative programming. To this aim, we have developed a set of transformation rules to map Python for loops into list comprehensions. On the one hand, on artificial code snippets, we found list comprehensions to be faster than procedural code, with differences becoming evident if amplifying the tests, i.e., executing the code fragment thousands of times. On the other hand, this does not happen when executing real-world Python projects, where the performance may or may not improve, depending on the projects' features and the nature of the manipulated objects.
Longitudinal reproducibility of brain and spinal cord quantitative MRI biomarkers
Mathieu Boudreau
Agah Karakuzu
Arnaud Boré
Basile Pinsard
Kiril Zelenkovski
Eva Alonso‐Ortiz
Julie Boyle
Lune Bellec
Quantitative MRI (qMRI) promises better specificity, accuracy, repeatability, and reproducibility relative to its clinically-used qualitativ… (voir plus)e MRI counterpart. Longitudinal reproducibility is particularly important in qMRI. The goal is to reliably quantify tissue properties that may be assessed in longitudinal clinical studies throughout disease progression or during treatment. In this work, we present the initial data release of the quantitative MRI portion of the Courtois project on neural modelling (CNeuroMod), where the brain and cervical spinal cord of six participants were scanned at regular intervals over the course of several years. This first release includes three years of data collection and up to ten sessions per participant using quantitative MRI imaging protocols (T1, magnetization transfer (MTR, MTsat), and diffusion). In the brain, T1MP2RAGE, FA, MD, and RD all exhibited high longitudinal reproducibility (intraclass correlation coefficient— ICC ≃ 1 and within-subject coefficient of variations— wCV 1%). The spinal cord cross-sectional area (CSA) computed using T2w images and T1MTsat exhibited the best longitudinal reproducibility (ICC ≃ 1 and 0.7 respectively, and wCV 2.4% and 6.9%). Results from this work show the level of longitudinal reproducibility that can be expected from qMRI protocols in the brain and spinal cord in the absence of hardware and software upgrades, and could help in the design of future longitudinal clinical studies.
Longitudinal reproducibility of brain and spinal cord quantitative MRI biomarkers
Mathieu Boudreau
Agah Karakuzu
Arnaud Boré
Basile Pinsard
Kiril Zelenkovski
Eva Alonso‐Ortiz
Julie Boyle
Lune Bellec
Quantitative MRI (qMRI) promises better specificity, accuracy, repeatability, and reproducibility relative to its clinically-used qualitativ… (voir plus)e MRI counterpart. Longitudinal reproducibility is particularly important in qMRI. The goal is to reliably quantify tissue properties that may be assessed in longitudinal clinical studies throughout disease progression or during treatment. In this work, we present the initial data release of the quantitative MRI portion of the Courtois project on neural modelling (CNeuroMod), where the brain and cervical spinal cord of six participants were scanned at regular intervals over the course of several years. This first release includes three years of data collection and up to ten sessions per participant using quantitative MRI imaging protocols (T1, magnetization transfer (MTR, MTsat), and diffusion). In the brain, T1MP2RAGE, FA, MD, and RD all exhibited high longitudinal reproducibility (intraclass correlation coefficient— ICC ≃ 1 and within-subject coefficient of variations— wCV 1%). The spinal cord cross-sectional area (CSA) computed using T2w images and T1MTsat exhibited the best longitudinal reproducibility (ICC ≃ 1 and 0.7 respectively, and wCV 2.4% and 6.9%). Results from this work show the level of longitudinal reproducibility that can be expected from qMRI protocols in the brain and spinal cord in the absence of hardware and software upgrades, and could help in the design of future longitudinal clinical studies.
Machine Translation Hallucination Detection for Low and High Resource Languages using Large Language Models
Kenza Benkirane
Laura Gongas
Shahar Pelles
Naomi Fuchs
Joshua Darmon
Pontus Stenetorp
Eduardo Sánchez
Meta
Maximum entropy GFlowNets with soft Q-learning