Portrait de Yann Dauphin n'est pas disponible

Yann Dauphin

Alumni

Publications

Capturing Individual Human Preferences with Reward Features
Andr'e Barreto
Yiran Mao
Nicolas Perez-Nieves
Bobak Shahriari
Capturing Individual Human Preferences with Reward Features
Andre Barreto
Yiran Mao
Nicolas Perez-Nieves
Bobak Shahriari
Reinforcement learning from human feedback usually models preferences using a reward model that does not distinguish between people. We argu… (voir plus)e that this is unlikely to be a good design choice in contexts with high potential for disagreement, like in the training of large language models. We propose a method to specialise a reward model to a person or group of people. Our approach builds on the observation that individual preferences can be captured as a linear combination of a set of general reward features. We show how to learn such features and subsequently use them to quickly adapt the reward model to a specific individual, even if their preferences are not reflected in the training data. We present experiments with large language models comparing the proposed architecture with a non-adaptive reward model and also adaptive counterparts, including models that do in-context personalisation. Depending on how much disagreement there is in the training data, our model either significantly outperforms the baselines or matches their performance with a simpler architecture and more stable training.
Synthetic Data Generation and Joint Learning for Robust Code-Mixed Translation
Hi Bn
Ramakrishna Appicharla
Kamal Kumar
Asif Gupta
Yoshua Ben­
Ondrej Bojar
Christian Buck
Christian Federmann
Yong Cheng
Lu Jiang
Wolfgang Macherey
Alexis Conneau
Guillaume Lample. 2019
Cross­
Yinhan Liu
Jiatao Gu
Naman Goyal
Sergey Xian Li … (voir 45 de plus)
Carol Myers­Scotton. 1997
El Moatez
Billah Nagoudi
AbdelRahim Elmadany
Muhammad Abdul­Mageed. 2021. Investigat­
Myle Ott
Sergey Edunov
Alexei R Baevski
Parth Patwa
Gustavo Aguilar
Sudipta Kar
Suraj
Srinivas Pandey
Björn Pykl
Gambäck
Tanmoy
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
dukasz Kaiser
Illia Polosukhin. 2017
Attention
Genta Indra Winata
Andrea Madotto
Chien­Sheng
Wu Pascale
Fung
Code­switching
ing. In
Felix Wu
Angela Fan
Linting Xue
Noah Constant
Mihir Adam Roberts
Rami Kale
Aditya Al­Rfou
Aditya Siddhant
Barua
Shuyan Zhou
Xiangkai Zeng
Antonios Yingqi Zhou
Anastasopoulos Graham
Neubig. 2019
Im­
The widespread online communication in a modern multilingual world has provided opportunities to blend more than one language (aka code-mixe… (voir plus)d language) in a single utterance. This has resulted a formidable challenge for the computational models due to the scarcity of annotated data and presence of noise. A potential solution to mitigate the data scarcity problem in low-resource setup is to leverage existing data in resource-rich language through translation. In this paper, we tackle the problem of code-mixed (Hinglish and Bengalish) to English machine translation. First, we synthetically develop HINMIX, a parallel corpus of Hinglish to English, with ~4.2M sentence pairs. Subsequently, we propose RCMT, a robust perturbation based joint-training model that learns to handle noise in the real-world code-mixed text by parameter sharing across clean and noisy words. Further, we show the adaptability of RCMT in a zero-shot setup for Bengalish to English translation. Our evaluation and comprehensive analyses qualitatively and quantitatively demonstrate the superiority of RCMT over state-of-the-art code-mixed and robust translation methods.
A density estimation perspective on learning from pairwise human preferences
Learning from human feedback (LHF) -- and in particular learning from pairwise preferences -- has recently become a crucial ingredient in tr… (voir plus)aining large language models (LLMs), and has been the subject of much research. Most recent works frame it as a reinforcement learning problem, where a reward function is learned from pairwise preference data and the LLM is treated as a policy which is adapted to maximize the rewards, often under additional regularization constraints. We propose an alternative interpretation which centers on the generative process for pairwise preferences and treats LHF as a density estimation problem. We provide theoretical and empirical results showing that for a family of generative processes defined via preference behavior distribution equations, training a reward function on pairwise preferences effectively models an annotator's implicit preference distribution. Finally, we discuss and present findings on"annotator misspecification"-- failure cases where wrong modeling assumptions are made about annotator behavior, resulting in poorly-adapted models -- suggesting that approaches that learn from pairwise human preferences could have trouble learning from a population of annotators with diverse viewpoints.
JaxPruner: A concise library for sparsity research
Joo Hyung Lee
Wonpyo Park
Nicole Elyse Mitchell
Han-Byul Kim
Namhoon Lee
Elias Frantar
Yun Long
Amir Yazdanbakhsh
Shivani Agrawal
Suvinay Subramanian
Sheng-Chun Kao
Xingyao Zhang
Trevor Gale
Aart J.C. Bik
Woohyun Han
Milen Ferev
Zhonglin Han … (voir 5 de plus)
Hong-Seok Kim
Utku Evci
This paper introduces JaxPruner, an open-source JAX-based pruning and sparse training library for machine learning research. JaxPruner aims … (voir plus)to accelerate research on sparse neural networks by providing concise implementations of popular pruning and sparse training algorithms with minimal memory and latency overhead. Algorithms implemented in JaxPruner use a common API and work seamlessly with the popular optimization library Optax, which, in turn, enables easy integration with existing JAX based libraries. We demonstrate this ease of integration by providing examples in four different codebases: Scenic, t5x, Dopamine and FedJAX and provide baseline experiments on popular benchmarks.
Selective Brain Damage: Measuring the Disparate Impact of Model Pruning
Sara Hooker
Andrea Frome
Neural network pruning techniques have demonstrated it is possible to remove the majority of weights in a network with surprisingly little d… (voir plus)egradation to test set accuracy. However, this measure of performance conceals significant differences in how different classes and images are impacted by pruning. We find that certain examples, which we term pruning identified exemplars (PIEs), and classes are systematically more impacted by the introduction of sparsity. Removing PIE images from the test-set greatly improves top-1 accuracy for both pruned and non-pruned models. These hard-to-generalize-to images tend to be mislabelled, of lower image quality, depict multiple objects or require fine-grained classification. These findings shed light on previously unknown trade-offs, and suggest that a high degree of caution should be exercised before pruning is used in sensitive domains.
What Do Compressed Deep Neural Networks Forget
Sara Hooker
Gregory Clark
Andrea Frome
Deep neural network pruning and quantization techniques have demonstrated it is possible to achieve high levels of compression with surprisi… (voir plus)ngly little degradation to test set accuracy. However, this measure of performance conceals significant differences in how different classes and images are impacted by model compression techniques. We find that models with radically different numbers of weights have comparable top-line performance metrics but diverge considerably in behavior on a narrow subset of the dataset. This small subset of data points, which we term Pruning Identified Exemplars (PIEs) are systematically more impacted by the introduction of sparsity. Compression disproportionately impacts model performance on the underrepresented long-tail of the data distribution. PIEs over-index on atypical or noisy images that are far more challenging for both humans and algorithms to classify. Our work provides intuition into the role of capacity in deep neural networks and the trade-offs incurred by compression. An understanding of this disparate impact is critical given the widespread deployment of compressed models in the wild.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
J. Bergstra
Josh Bleecher Snyder
Paul F. Christiano
Marc-Alexandre Côté
Myriam Côté
Julien Demouth
Sander Dieleman
M'elanie Ducoffe
Ziye Fan
Mathieu Germain
Ian J. Goodfellow
Matthew Graham
Balázs Hidasi
Arjun Jain
S'ebastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Pascal Lamblin
Eric P. Larsen
S. Lee
Simon-mark Lefrancois
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
R. McGibbon
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Samira Shabanian
Sigurd Spieckermann
S. Subramanyam
Gijs van Tulder
Joseph P. Turian
Sebastian Urban
Dustin J. Webb
M. Willson
Lijun Xue
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
Josh Bleecher Snyder
Paul F. Christiano
Marc-Alexandre Côté
Myriam Côté
Julien Demouth
Sander Dieleman
M'elanie Ducoffe
Ziye Fan
Mathieu Germain
Ian G Goodfellow
Matthew Graham
Balázs Hidasi
Arjun Jain
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Pascal Lamblin
Eric Larsen
S. Lee
Simon-mark Lefrancois
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
R. McGibbon
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Samira Shabanian
Sigurd Spieckermann
S. Subramanyam
Gijs van Tulder
Sebastian Urban
Dustin J. Webb
M. Willson
Lijun Xue
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.