Portrait de Xavier Glorot n'est pas disponible

Xavier Glorot

Alumni

Publications

Proving theorems using Incremental Learning and Hindsight Experience Replay
Maxwell Crouse
Eser Aygün
Bassem Makni
Laurent Orseau
Vernon Ralph Austel
Cristina Cornelio
Shajith Ikbal
Stephen M Mcaleer
Pavan Kapanipathi
Vlad Firoiu
Ndivhuwo Makondo
Lei M Zhang
Shibl Mourad
The highest performing ATP systems (e.g., [7, 18]) in first order logic have been evolving for decades and have grown to use an increasing n… (voir plus)umber of manually designed heuristics mixed with some machine learning, to obtain a large number of search strategies that are tried sequentially or in parallel. Some recent works [5, 13, 19] build on top of these provers, using modern machine learning techniques to augment, select or prioritize their already existing heuristics, with some success. Other recent works do not build on top of other provers, but still require existing proof examples as input (e.g., [9, 23]). Such machine-learning-based ATP systems can struggle to solve difficult problems when the training dataset does not provide problems of sufficiently diverse difficulties. In this paper, we propose an approach which can build a strong theorem prover without relying on existing domain-specific heuristics or on prior input data (in the form of proofs) to prime the learning. We strive to design a learning methodology for ATP that allows a system to improve even when there are large gaps in the difficulty of given set of theorems. In particular, given a set of conjectures without proofs, our system trains itself, based on its own attempts and (dis)proves an increasing number of conjectures, an approach which can be viewed as a form of incremental learning. Additionally, all the previous approaches [19, 1, 13] learn exclusively on successful proof attempts. When no new theorem can be proven, the learner may not be able to improve anymore and thus the system may not be able to obtain more training data. This could in principle happen even at the very start of training, if all the theorems available are too hard. To tackle this challenge, we adapt the idea of hindsight experience replay (HER) [3] to ATP: Clauses reached during proof attempts (whether successful or not) are turned into goals in hindsight, producing a large amount of ‘auxiliary’ theorems with proofs of varied difficulties for the learner, even in principle when no theorem from the original set can be proven initially. This leads to a smoother learning regime and a constantly improving learner. We evaluate our approach on two popular benchmarks: MPTP2078 [2] and M2k [17] and compare it both with TRAIL [1], a recent machine learning prover as well as with E prover [24, 7], one of the leading heuristic provers. Our proposed approach substantially outperforms TRAIL [1] on both datasets, surpasses E in the auto configuration with a 100s time limit, and is competitive with E in the autoschedule configuration with a 7 days time limit. In addition, our approach almost always (99.5% of cases) finds shorter proofs than E.
Training a First-Order Theorem Prover from Synthetic Data
Vlad Firoiu
Eser Aygün
Laurent Orseau
Lei Zhang
Shibl Mourad
SPE: Symmetrical Prompt Enhancement for Factual Knowledge Retrieval
James M. Crawford
Matthew L. Ginsberg
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Alex Graves
Abdel rahman Mohamed
Adi Haviv
Jonathan Berant
Amir Globerson
Chloe Kiddon
Pedro M. Domingos
Brian Lester
Rami Al-rfou'
Noah Constant. 2021
Weizhe Yuan … (voir 6 de plus)
Jinlan Fu
Zhengbao Jiang
Xiao Liu
Yanan Zheng
Zhengxiao Du
Ming Ding
Pretrained language models (PLMs) have 001 been shown to accumulate factual knowledge 002 from their unsupervised pretraining proce-003 dure… (voir plus)s (Petroni et al., 2019). Prompting is an 004 effective way to query such knowledge from 005 PLMs. Recently, continuous prompt methods 006 have been shown to have a larger potential 007 than discrete prompt methods in generating ef-008 fective queries (Liu et al., 2021a). However, 009 these methods do not consider symmetry of 010 the task. In this work, we propose Symmet-011 rical Prompt Enhancement (SPE), a continu-012 ous prompt-based method for fact retrieval that 013 leverages the symmetry of the task. Our results 014 on LAMA, a popular fact retrieval dataset, 015 show significant improvement of SPE over pre-016 vious prompt methods
Learning to Prove from Synthetic Theorems
Eser Aygün
Vlad Firoiu
Laurent Orseau
Shibl Mourad
A major challenge in applying machine learning to automated theorem proving is the scarcity of training data, which is a key ingredient in t… (voir plus)raining successful deep learning models. To tackle this problem, we propose an approach that relies on training with synthetic theorems, generated from a set of axioms. We show that such theorems can be used to train an automated prover and that the learned prover transfers successfully to human-generated theorems. We demonstrate that a prover trained exclusively on synthetic theorems can solve a substantial fraction of problems in TPTP, a benchmark dataset that is used to compare state-of-the-art heuristic provers. Our approach outperforms a model trained on human-generated problems in most axiom sets, thereby showing the promise of using synthetic data for this task.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
J. Bergstra
Josh Bleecher Snyder
Paul F. Christiano
Marc-Alexandre Côté
Myriam Côté
Julien Demouth
Sander Dieleman
M'elanie Ducoffe
Ziye Fan
Mathieu Germain
Ian J. Goodfellow
Matthew Graham
Balázs Hidasi
Arjun Jain
S'ebastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Pascal Lamblin
Eric P. Larsen
S. Lee
Simon-mark Lefrancois
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
R. McGibbon
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Samira Shabanian
Sigurd Spieckermann
S. Subramanyam
Gijs van Tulder
Joseph P. Turian
Sebastian Urban
Dustin J. Webb
M. Willson
Lijun Xue
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
Josh Bleecher Snyder
Paul F. Christiano
Marc-Alexandre Côté
Myriam Côté
Julien Demouth
Sander Dieleman
M'elanie Ducoffe
Ziye Fan
Mathieu Germain
Ian G Goodfellow
Matthew Graham
Balázs Hidasi
Arjun Jain
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Pascal Lamblin
Eric Larsen
S. Lee
Simon-mark Lefrancois
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
R. McGibbon
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Samira Shabanian
Sigurd Spieckermann
S. Subramanyam
Gijs van Tulder
Sebastian Urban
Dustin J. Webb
M. Willson
Lijun Xue
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.