Portrait de Simon Lacoste-Julien

Simon Lacoste-Julien

Membre académique principal
Chaire en IA Canada-CIFAR
Directeur scientifique adjoint, Mila, Professeur agrégé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Vice-président et directeur de laboratoire, Samsung Advanced Institute of Technology (SAIT) AI Lab, Montréal
Sujets de recherche
Apprentissage profond
Causalité
Modèles génératifs
Modèles probabilistes
Optimisation
Théorie de l'apprentissage automatique
Traitement du langage naturel
Vision par ordinateur

Biographie

Simon Lacoste-Julien est professeur agrégé au Département d'informatique et de recherche opérationnelle (DIRO) de l'Université de Montréal, membre cofondateur de Mila – Institut québécois d’intelligence artificielle et titulaire d'une chaire en IA Canada-CIFAR. Il dirige également à temps partiel le SAIT AI Lab Montréal.

Ses recherches portent sur l'apprentissage automatique et les mathématiques appliquées, et intègrent des applications à la vision artificielle et au traitement du langage naturel. Il a obtenu une licence en mathématiques, physique et informatique à l’Université McGill, un doctorat en informatique à l’Université de Californie à Berkeley et un postdoctorat à l'Université de Cambridge.

Il a passé quelques années à l'Institut national de recherche en sciences et technologies du numérique (INRIA) et à l'École normale supérieure de Paris en tant que professeur de recherche avant de revenir à Montréal, en 2016, pour répondre à l'appel de Yoshua Bengio et contribuer à la croissance de l'écosystème de l'IA à Montréal.

Étudiants actuels

Visiteur de recherche indépendant - Samsung SAIT
Visiteur de recherche indépendant - Samsung SAIT
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Visiteur de recherche indépendant - Samsung SAIT
Visiteur de recherche indépendant - Samsung SAIT
Collaborateur·rice alumni - UdeM
Visiteur de recherche indépendant - Samsung SAIT
Collaborateur·rice de recherche - UdeM
Visiteur de recherche indépendant - Samsung SAIT
Visiteur de recherche indépendant - Seoul National University, Korea
Visiteur de recherche indépendant - UdeM
Visiteur de recherche indépendant - Pohang University of Science and Technology in Pohang, Korea
Collaborateur·rice de recherche
Maîtrise recherche - UdeM
Visiteur de recherche indépendant - Samsung SAIT
Collaborateur·rice de recherche - UdeM
Doctorat - UdeM
Visiteur de recherche indépendant - Samsung SAIT

Publications

Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity
Two of the most prominent algorithms for solving unconstrained smooth games are the classical stochastic gradient descent-ascent (SGDA) and … (voir plus)the recently introduced stochastic consensus optimization (SCO) [Mescheder et al., 2017]. SGDA is known to converge to a stationary point for specific classes of games, but current convergence analyses require a bounded variance assumption. SCO is used successfully for solving large-scale adversarial problems, but its convergence guarantees are limited to its deterministic variant. In this work, we introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO under this condition for solving a class of stochastic variational inequality problems that are potentially non-monotone. We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size, and we propose insightful stepsize-switching rules to guarantee convergence to the exact solution. In addition, our convergence guarantees hold under the arbitrary sampling paradigm, and as such, we give insights into the complexity of minibatching.
A Survey of Self-Supervised and Few-Shot Object Detection
Gabriel Huang
Issam Hadj Laradji
David Vazquez
Pau Rodriguez
Labeling data is often expensive and time-consuming, especially for tasks such as object detection and instance segmentation, which require … (voir plus)dense labeling of the image. While few-shot object detection is about training a model on novel (unseen) object classes with little data, it still requires prior training on many labeled examples of base (seen) classes. On the other hand, self-supervised methods aim at learning representations from unlabeled data which transfer well to downstream tasks such as object detection. Combining few-shot and self-supervised object detection is a promising research direction. In this survey, we review and characterize the most recent approaches on few-shot and self-supervised object detection. Then, we give our main takeaways and discuss future research directions. Project page: https://gabrielhuang.github.io/fsod-survey/.
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
Issam Hadj Laradji
We propose a stochastic variant of the classical Polyak step-size (Polyak, 1987) commonly used in the subgradient method. Although computing… (voir plus) the Polyak step-size requires knowledge of the optimal function values, this information is readily available for typical modern machine learning applications. Consequently, the proposed stochastic Polyak step-size (SPS) is an attractive choice for setting the learning rate for stochastic gradient descent (SGD). We provide theoretical convergence guarantees for SGD equipped with SPS in different settings, including strongly convex, convex and non-convex functions. Furthermore, our analysis results in novel convergence guarantees for SGD with a constant step-size. We show that SPS is particularly effective when training over-parameterized models capable of interpolating the training data. In this setting, we prove that SPS enables SGD to converge to the true solution at a fast rate without requiring the knowledge of any problem-dependent constants or additional computational overhead. We experimentally validate our theoretical results via extensive experiments on synthetic and real datasets. We demonstrate the strong performance of SGD with SPS compared to state-of-the-art optimization methods when training over-parameterized models.
SVRG meets AdaGrad: painless variance reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad Harikandeh
Mark Schmidt
An Analysis of the Adaptation Speed of Causal Models
Rémi LE PRIOL
Reza Babanezhad Harikandeh
Implicit Regularization in Deep Learning: A View from Function Space
Aristide Baratin
Thomas George
César Laurent
We approach the problem of implicit regularization in deep learning from a geometrical viewpoint. We highlight a possible regularization eff… (voir plus)ect induced by a dynamical alignment of the neural tangent features introduced by Jacot et al, along a small number of task-relevant directions. By extrapolating a new analysis of Rademacher complexity bounds in linear models, we propose and study a new heuristic complexity measure for neural networks which captures this phenomenon, in terms of sequences of tangent kernel classes along in the learning trajectories.
Implicit Regularization in Deep Learning: A View from Function Space
Aristide Baratin
Thomas George
César Laurent
To Each Optimizer a Norm, To Each Norm its Generalization
Sharan Vaswani
Reza Babanezhad Harikandeh
Jose Gallego
Aaron Mishkin
We study the implicit regularization of optimization methods for linear models interpolating the training data in the under-parametrized and… (voir plus) over-parametrized regimes. Since it is difficult to determine whether an optimizer converges to solutions that minimize a known norm, we flip the problem and investigate what is the corresponding norm minimized by an interpolating solution. Using this reasoning, we prove that for over-parameterized linear regression, projections onto linear spans can be used to move between different interpolating solutions. For under-parameterized linear classification, we prove that for any linear classifier separating the data, there exists a family of quadratic norms ||.||_P such that the classifier's direction is the same as that of the maximum P-margin solution. For linear classification, we argue that analyzing convergence to the standard maximum l2-margin is arbitrary and show that minimizing the norm induced by the data results in better generalization. Furthermore, for over-parameterized linear classification, projections onto the data-span enable us to use techniques from the under-parameterized setting. On the empirical side, we propose techniques to bias optimizers towards better generalizing solutions, improving their test performance. We validate our theoretical results via synthetic experiments, and use the neural tangent kernel to handle non-linear models.
Accelerating Smooth Games by Manipulating Spectral Shapes
An Analysis of the Adaptation Speed of Causal Models
Rémi LE PRIOL
Reza Babanezhad Harikandeh
We consider the problem of discovering the causal process that generated a collection of datasets. We assume that all these datasets were ge… (voir plus)nerated by unknown sparse interventions on a structural causal model (SCM)
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
Issam Hadj Laradji
We propose a stochastic variant of the classical Polyak step-size (Polyak, 1987) commonly used in the subgradient method. Although computing… (voir plus) the Polyak step-size requires knowledge of the optimal function values, this information is readily available for typical modern machine learning applications. Consequently, the proposed stochastic Polyak step-size (SPS) is an attractive choice for setting the learning rate for stochastic gradient descent (SGD). We provide theoretical convergence guarantees for SGD equipped with SPS in different settings, including strongly convex, convex and non-convex functions. Furthermore, our analysis results in novel convergence guarantees for SGD with a constant step-size. We show that SPS is particularly effective when training over-parameterized models capable of interpolating the training data. In this setting, we prove that SPS enables SGD to converge to the true solution at a fast rate without requiring the knowledge of any problem-dependent constants or additional computational overhead. We experimentally validate our theoretical results via extensive experiments on synthetic and real datasets. We demonstrate the strong performance of SGD with SPS compared to state-of-the-art optimization methods when training over-parameterized models.
Accelerating Smooth Games by Manipulating Spectral Shapes
We use matrix iteration theory to characterize acceleration in smooth games. We define the spectral shape of a family of games as the set co… (voir plus)ntaining all eigenvalues of the Jacobians of standard gradient dynamics in the family. Shapes restricted to the real line represent well-understood classes of problems, like minimization. Shapes spanning the complex plane capture the added numerical challenges in solving smooth games. In this framework, we describe gradient-based methods, such as extragradient, as transformations on the spectral shape. Using this perspective, we propose an optimal algorithm for bilinear games. For smooth and strongly monotone operators, we identify a continuum between convex minimization, where acceleration is possible using Polyak's momentum, and the worst case where gradient descent is optimal. Finally, going beyond first-order methods, we propose an accelerated version of consensus optimization.