Portrait de Mirco Ravanelli

Mirco Ravanelli

Membre académique associé
Professeur adjoint, Concordia University, École de génie et d'informatique Gina-Cody
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage profond

Biographie

Mirco Ravanelli est professeur adjoint à l'Université Concordia, professeur associé à l'Université de Montréal et membre associé de Mila – Institut québécois d’intelligence artificielle. Lauréat du prix Amazon Research 2022, il est expert en apprentissage profond et en IA conversationnelle, et a publié plus de 60 articles dans ces domaines. Il se concentre principalement sur les nouveaux algorithmes d'apprentissage profond, y compris l'apprentissage autosupervisé, continu, multimodal, coopératif et économe en énergie. Mirco Ravanelli a effectué son postdoctorat à Mila, sous la direction du professeur Yoshua Bengio. Il est notamment le fondateur et le chef de file de SpeechBrain, l'une des boîtes à outils en code source ouvert les plus largement adoptées dans le domaine du traitement de la parole et de l'IA conversationnelle.

Étudiants actuels

Maîtrise recherche - Concordia
Collaborateur·rice de recherche - Concordia University
Collaborateur·rice de recherche - Concordia University
Maîtrise recherche - Concordia
Doctorat - Concordia
Co-superviseur⋅e :
Maîtrise recherche - Concordia
Co-superviseur⋅e :
Maîtrise recherche - Concordia
Doctorat - Concordia
Co-superviseur⋅e :
Doctorat - Concordia
Collaborateur·rice de recherche - International School for Advanced Studies (Trieste, Italy)
Collaborateur·rice de recherche - Concordia University
Collaborateur·rice de recherche - Concordia University
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - Concordia
Co-superviseur⋅e :
Postdoctorat - McGill
Doctorat - UdeM
Collaborateur·rice de recherche - Concordia University

Publications

Rescuespeech: A German Corpus for Speech Recognition in Search and Rescue Domain
Sangeet Sagar
Bernd Kiefer
Ivana Kruijff-Korbayová
Josef van Genabith
Despite the recent advancements in speech recognition, there are still difficulties in accurately transcribing conversational and emotional … (voir plus)speech in noisy and reverberant acoustic environments. This poses a particular challenge in the search and rescue (SAR) domain, where transcribing conversations among rescue team members is crucial to support real-time decision-making. The scarcity of speech data and associated background noise in SAR scenarios make it difficult to deploy robust speech recognition systems.To address this issue, we have created and made publicly available a German speech dataset called RescueSpeech. This dataset includes real speech recordings from simulated rescue exercises. Additionally, we have released competitive training recipes and pre-trained models. Our study highlights that the performance attained by state-of-the-art methods in this challenging scenario is still far from reaching an acceptable level.
Speech Emotion Diarization: Which Emotion Appears When?
Yingzhi Wang
Alaa Nfissi
Alya Yacoubi
Speech Emotion Recognition (SER) typically relies on utterance-level solutions. However, emotions conveyed through speech should be consider… (voir plus)ed as discrete speech events with definite temporal boundaries, rather than attributes of the entire utterance. To reflect the fine-grained nature of speech emotions and to unify various fine-grained methods under a single objective, we propose a new task: Speech Emotion Diarization (SED). Just as Speaker Diarization answers the question of “Who speaks when?”, Speech Emotion Diarization answers the question of “Which emotion appears when?”. To facilitate the evaluation of the performance and establish a common benchmark, we introduce the Zaion Emotion Dataset (ZED), an openly accessible speech emotion dataset that includes non-acted emotions recorded in real-life conditions, along with manually annotated boundaries of emotion segments within the utterance. We provide competitive baselines and open-source the code and the pre-trained models.
TorchAudio 2.1: Advancing Speech Recognition, Self-Supervised Learning, and Audio Processing Components for Pytorch
Jeff Hwang
Moto Hira
Caroline Chen
Xiaohui Zhang
Zhaoheng Ni
Guangzhi Sun
Pingchuan Ma
Ruizhe Huang
Vineel Pratap
Yuekai Zhang
Anurag Kumar
Chin-Yun Yu
Chuang Zhu
Chunxi Liu
Jacob Kahn
Peng Sun
Shinji Watanabe
Yangyang Shi
Yumeng Tao … (voir 4 de plus)
Robin Scheibler
Samuele Cornell
Sean Kim
Stavros Petridis
TorchAudio is an open-source audio and speech processing library built for PyTorch. It aims to accelerate the research and development of au… (voir plus)dio and speech technologies by providing well-designed, easy-to-use, and performant PyTorch components. Its contributors routinely engage with users to understand their needs and fulfill them by developing impactful features. Here, we survey TorchAudio’s development principles and contents and highlight key features we include in its latest version (2.1): self-supervised learning pre-trained pipelines and training recipes, high-performance CTC decoders, speech recognition models and training recipes, advanced media I/O capabilities, and tools for performing forced alignment, multi-channel speech enhancement, and reference-less speech assessment. For a selection of these features, through empirical studies, we demonstrate their efficacy and show that they achieve competitive or state-of-the-art performance.
Parameter-Efficient Transfer Learning of Audio Spectrogram Transformers
Umberto Cappellazzo
Daniele Falavigna
Alessio Brutti
Parameter-efficient transfer learning (PETL) methods have emerged as a solid alternative to the standard full fine-tuning approach. They onl… (voir plus)y train a few extra parameters for each downstream task, without sacrificing performance and dispensing with the issue of storing a copy of the pre-trained model for each task. For audio classification tasks, the Audio Spectrogram Transformer (AST) model shows impressive results. However, surprisingly, how to efficiently adapt it to several downstream tasks has not been tackled before. In this paper, we bridge this gap and present a detailed investigation of common PETL methods for the adaptation of the AST model to audio/speech tasks. Furthermore, we propose a new adapter design that exploits the convolution module of the Conformer model, leading to superior performance over the standard PETL approaches and surpassing or achieving performance parity with full fine-tuning by updating only 0.29% of the parameters. Finally, we provide ablation studies revealing that our proposed adapter: 1) proves to be effective in few-shot efficient transfer learning, 2) attains optimal results regardless of the amount of the allocated parameters, and 3) can be applied to other pre-trained models. Our code is available at https:/github.com/umbertocappellazzo/PETL_AST.
Speech Self-Supervised Representations Benchmarking: a Case for Larger Probing Heads
Salah Zaiem
Youcef Kemiche
Titouan Parcollet
Slim Essid
Speech Self-Supervised Representation Benchmarking: Are We Doing it Right?
Salah Zaiem
Youcef Kemiche
Titouan Parcollet
Slim Essid
Self-supervised learning (SSL) has recently allowed leveraging large datasets of unlabeled speech signals to reach impressive performance on… (voir plus) speech tasks using only small amounts of annotated data. The high number of proposed approaches fostered the need and rise of extended benchmarks that evaluate their performance on a set of downstream tasks exploring various aspects of the speech signal. However, and while the number of considered tasks has been growing, most rely upon a single decoding architecture that maps the frozen SSL representations to the downstream labels. This work investigates the robustness of such benchmarking results to changes in the decoder architecture. Interestingly, it appears that varying the architecture of the downstream decoder leads to significant variations in the leaderboards of most tasks. Concerningly, our study reveals that benchmarking using limited decoders may cause a counterproductive increase in the sizes of the developed SSL models.
Simulated Annealing in Early Layers Leads to Better Generalization
Amir M. Sarfi
Zahra Karimpour
Muawiz Chaudhary
Nasir M. Khalid
Sudhir Mudur
Recently, a number of iterative learning methods have been introduced to improve generalization. These typically rely on training for longer… (voir plus) periods of time in exchange for improved generalization. LLF (later-layer-forgetting) is a state-of-the-art method in this category. It strengthens learning in early layers by periodically re-initializing the last few layers of the network. Our principal innovation in this work is to use Simulated annealing in EArly Layers (SEAL) of the network in place of re-initialization of later layers. Essentially, later layers go through the normal gradient descent process, while the early layers go through short stints of gradient ascent followed by gradient descent. Extensive experiments on the popular Tiny-ImageNet dataset benchmark and a series of transfer learning and few-shot learning tasks show that we outperform LLF by a significant margin. We further show that, compared to normal training, LLF features, although improving on the target task, degrade the transfer learning performance across all datasets we explored. In comparison, our method outperforms LLF across the same target datasets by a large margin. We also show that the prediction depth of our method is significantly lower than that of LLF and normal training, indicating on average better prediction performance. 11The code to reproduce our results is publicly available at: https://github.com/amiiir-sarfi/SEAL
Fine-Tuning Strategies for Faster Inference Using Speech Self-Supervised Models: A Comparative Study
Salah Zaiem
Robin Algayres
Titouan Parcollet
Slim Essid
Self-supervised learning (SSL) has allowed substantial progress in Automatic Speech Recognition (ASR) performance in low-resource settings. … (voir plus)In this context, it has been demonstrated that larger self-supervised feature extractors are crucial for achieving lower downstream ASR error rates. Thus, better performance might be sanctioned with longer inferences. This article explores different approaches that may be deployed during the fine-tuning to reduce the computations needed in the SSL encoder, leading to faster inferences. We adapt a number of existing techniques to common ASR settings and benchmark them, displaying performance drops and gains in inference times. Interestingly, we found that given enough downstream data, a simple downsampling of the input sequences outperforms the other methods with both low performance drops and high computational savings, reducing computations by 61.3% with an WER increase of only 0. 81. Finally, we analyze the robustness of the comparison to changes in dataset conditions, revealing sensitivity to dataset size.
Speech Self-Supervised Representation Benchmarking: Are We Doing it Right?
Salah Zaiem
Youcef Kemiche
Titouan Parcollet
Slim Essid
Self-supervised learning (SSL) has recently allowed leveraging large datasets of unlabeled speech signals to reach impressive performance on… (voir plus) speech tasks using only small amounts of annotated data. The high number of proposed approaches fostered the need and rise of extended benchmarks that evaluate their performance on a set of downstream tasks exploring various aspects of the speech signal. However, and while the number of considered tasks has been growing, most rely upon a single decoding architecture that maps the frozen SSL representations to the downstream labels. This work investigates the robustness of such benchmarking results to changes in the decoder architecture. Interestingly, it appears that varying the architecture of the downstream decoder leads to significant variations in the leaderboards of most tasks. Concerningly, our study reveals that benchmarking using limited decoders may cause a counterproductive increase in the sizes of the developed SSL models.
Posthoc Interpretation via Quantization
Francesco Paissan
In this paper, we introduce a new approach, called Posthoc Interpretation via Quantization (PIQ), for interpreting decisions made by trained… (voir plus) classifiers. Our method utilizes vector quantization to transform the representations of a classifier into a discrete, class-specific latent space. The class-specific codebooks act as a bottleneck that forces the interpreter to focus on the parts of the input data deemed relevant by the classifier for making a prediction. Our model formulation also enables learning concepts by incorporating the supervision of pretrained annotation models such as state-of-the-art image segmentation models. We evaluated our method through quantitative and qualitative studies involving black-and-white images, color images, and audio. As a result of these studies we found that PIQ generates interpretations that are more easily understood by participants to our user studies when compared to several other interpretation methods in the literature.
Exploring Self-Attention Mechanisms for Speech Separation
Samuele Cornell
François Grondin
Mirko Bronzi
Transformers have enabled impressive improvements in deep learning. They often outperform recurrent and convolutional models in many tasks w… (voir plus)hile taking advantage of parallel processing. Recently, we proposed the SepFormer, which obtains state-of-the-art performance in speech separation with the WSJ0-2/3 Mix datasets. This paper studies in-depth Transformers for speech separation. In particular, we extend our previous findings on the SepFormer by providing results on more challenging noisy and noisy-reverberant datasets, such as LibriMix, WHAM!, and WHAMR!. Moreover, we extend our model to perform speech enhancement and provide experimental evidence on denoising and dereverberation tasks. Finally, we investigate, for the first time in speech separation, the use of efficient self-attention mechanisms such as Linformers, Lonformers, and ReFormers. We found that they reduce memory requirements significantly. For example, we show that the Reformer-based attention outperforms the popular Conv-TasNet model on the WSJ0-2Mix dataset while being faster at inference and comparable in terms of memory consumption.
OSSEM: one-shot speaker adaptive speech enhancement using meta learning
Cheng Yu
Szu-Wei Fu
Tsun-An Hsieh
Yu Tsao