Portrait de Mirco Ravanelli

Mirco Ravanelli

Membre académique associé
Professeur adjoint, Concordia University, École de génie et d'informatique Gina-Cody
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Sujets de recherche
Apprentissage profond

Biographie

Mirco Ravanelli est professeur adjoint à l'Université Concordia, professeur associé à l'Université de Montréal et membre associé de Mila – Institut québécois d’intelligence artificielle. Lauréat du prix Amazon Research 2022, il est expert en apprentissage profond et en IA conversationnelle, et a publié plus de 60 articles dans ces domaines. Il se concentre principalement sur les nouveaux algorithmes d'apprentissage profond, y compris l'apprentissage autosupervisé, continu, multimodal, coopératif et économe en énergie. Mirco Ravanelli a effectué son postdoctorat à Mila, sous la direction du professeur Yoshua Bengio. Il est notamment le fondateur et le chef de file de SpeechBrain, l'une des boîtes à outils en code source ouvert les plus largement adoptées dans le domaine du traitement de la parole et de l'IA conversationnelle.

Étudiants actuels

Maîtrise recherche - Concordia
Baccalauréat - Concordia
Collaborateur·rice de recherche - Concordia University
Collaborateur·rice de recherche - Concordia University
Collaborateur·rice de recherche - Concordia University
Stagiaire de recherche - Concordia
Stagiaire de recherche - Concordia
Maîtrise recherche - Concordia
Doctorat - Concordia
Co-superviseur⋅e :
Maîtrise recherche - Concordia
Co-superviseur⋅e :
Maîtrise recherche - Concordia
Doctorat - Concordia
Co-superviseur⋅e :
Doctorat - Concordia
Collaborateur·rice de recherche - International School for Advanced Studies (Trieste, Italy)
Collaborateur·rice de recherche - Concordia University
Collaborateur·rice alumni - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Co-superviseur⋅e :
Doctorat - Concordia
Co-superviseur⋅e :
Postdoctorat - McGill
Doctorat - UdeM

Publications

Listenable Maps for Zero-Shot Audio Classifiers
Francesco Paissan
Luca Della Libera
Interpreting the decisions of deep learning models, including audio classifiers, is crucial for ensuring the transparency and trustworthines… (voir plus)s of this technology. In this paper, we introduce LMAC-ZS (Listenable Maps for Audio Classifiers in the Zero-Shot context), which, to the best of our knowledge, is the first decoder-based post-hoc interpretation method for explaining the decisions of zero-shot audio classifiers. The proposed method utilizes a novel loss function that maximizes the faithfulness to the original similarity between a given text-and-audio pair. We provide an extensive evaluation using the Contrastive Language-Audio Pretraining (CLAP) model to showcase that our interpreter remains faithful to the decisions in a zero-shot classification context. Moreover, we qualitatively show that our method produces meaningful explanations that correlate well with different text prompts.
What Are They Doing? Joint Audio-Speech Co-Reasoning
Yingzhi Wang
Pooneh Mousavi
Artem Ploujnikov
In audio and speech processing, tasks usually focus on either the audio or speech modality, even when both sounds and human speech are prese… (voir plus)nt in the same audio clip. Recent Auditory Large Language Models (ALLMs) have made it possible to process audio and speech simultaneously within a single model, leading to further considerations of joint audio-speech tasks. In this paper, we establish a novel benchmark to investigate how well ALLMs can perform joint audio-speech processing. Specifically, we introduce Joint Audio-Speech Co-Reasoning (JASCO), a novel task that unifies audio and speech processing, strictly requiring co-reasoning across both modalities. We also release a scene-reasoning dataset called"What Are They Doing". Additionally, we provide deeper insights into the models' behaviors by analyzing their dependence on each modality.
What Are They Doing? Joint Audio-Speech Co-Reasoning
Yingzhi Wang
Pooneh Mousavi
Artem Ploujnikov
Dynamic HumTrans: Humming Transcription Using CNNs and Dynamic Programming
Shubham Gupta
Isaac Neri Gomez-Sarmiento
Faez Amjed Mezdari
Explaining Network Decision Provides Insights on the Causal Interaction Between Brain Regions in a Motor Imagery Task
Davide Borra
Multi-modal Decoding of Reach-to-Grasping from EEG and EMG via Neural Networks
Davide Borra
Matteo Fraternali
Elisa Magosso
LMAC-TD: Producing Time Domain Explanations for Audio Classifiers
Eleonora Mancini
Francesco Paissan
Audio Editing with Non-Rigid Text Prompts
Francesco Paissan
Zhepei Wang
Paris Smaragdis
In this paper, we explore audio-editing with non-rigid text edits. We show that the proposed editing pipeline is able to create audio edits … (voir plus)that remain faithful to the input audio. We explore text prompts that perform addition, style transfer, and in-painting. We quantitatively and qualitatively show that the edits are able to obtain results which outperform Audio-LDM, a recently released text-prompted audio generation model. Qualitative inspection of the results points out that the edits given by our approach remain more faithful to the input audio in terms of keeping the original onsets and offsets of the audio events.
Progres: Prompted Generative Rescoring on ASR N-Best
Ada Defne Tur
Adel Moumen
Large Language Models (LLMs) have shown their ability to improve the performance of speech recognizers by effectively rescoring the n-best h… (voir plus)ypotheses generated during the beam search process. However, the best way to exploit recent generative instruction-tuned LLMs for hypothesis rescoring is still unclear. This paper proposes a novel method that uses instruction-tuned LLMs to dynamically expand the n-best speech recognition hypotheses with new hypotheses generated through appropriately-prompted LLMs. Specifically, we introduce a new zero-shot method for ASR n-best rescoring, which combines confidence scores, LLM sequence scoring, and prompt-based hypothesis generation. We compare Llama-3-Instruct, GPT-3.5 Turbo, and GPT-4 Turbo as prompt-based generators with Llama-3 as sequence scorer LLM. We evaluated our approach using different speech recognizers and observed significant relative improvement in the word error rate (WER) ranging from 5% to 25%.
Progres: Prompted Generative Rescoring on ASR N-Best
Ada Defne Tur
Adel Moumen
Large Language Models (LLMs) have shown their ability to improve the performance of speech recognizers by effectively rescoring the n-best h… (voir plus)ypotheses generated during the beam search process. However, the best way to exploit recent generative instruction-tuned LLMs for hypothesis rescoring is still unclear. This paper proposes a novel method that uses instruction-tuned LLMs to dynamically expand the n-best speech recognition hypotheses with new hypotheses generated through appropriately-prompted LLMs. Specifically, we introduce a new zero-shot method for ASR n-best rescoring, which combines confidence scores, LLM sequence scoring, and prompt-based hypothesis generation. We compare Llama-3-Instruct, GPT-3.5 Turbo, and GPT-4 Turbo as prompt-based generators with Llama-3 as sequence scorer LLM. We evaluated our approach using different speech recognizers and observed significant relative improvement in the word error rate (WER) ranging from 5% to 25%.
Listenable Maps for Audio Classifiers
Francesco Paissan
Open-Source Conversational AI with SpeechBrain 1.0
Titouan Parcollet
Adel Moumen
Sylvain de Langen
Peter William VanHarn Plantinga
Yingzhi Wang
Pooneh Mousavi
Luca Della Libera
Artem Ploujnikov
Francesco Paissan
Davide Borra
Salah Zaiem
Zeyu Zhao
Shucong Zhang
Georgios Karakasidis
Sung-Lin Yeh
Pierre Champion
Aku Rouhe
Rudolf Braun … (voir 11 de plus)
Florian Mai
Juan Pablo Zuluaga
Seyed Mahed Mousavi
Andreas Nautsch
Xuechen Liu
Sangeet Sagar
Jarod Duret
Salima Mdhaffar
G. Laperriere
Renato De Mori
Yannick Estève
SpeechBrain is an open-source Conversational AI toolkit based on PyTorch, focused particularly on speech processing tasks such as speech rec… (voir plus)ognition, speech enhancement, speaker recognition, text-to-speech, and much more. It promotes transparency and replicability by releasing both the pre-trained models and the complete"recipes"of code and algorithms required for training them. This paper presents SpeechBrain 1.0, a significant milestone in the evolution of the toolkit, which now has over 200 recipes for speech, audio, and language processing tasks, and more than 100 models available on Hugging Face. SpeechBrain 1.0 introduces new technologies to support diverse learning modalities, Large Language Model (LLM) integration, and advanced decoding strategies, along with novel models, tasks, and modalities. It also includes a new benchmark repository, offering researchers a unified platform for evaluating models across diverse tasks.