Portrait de Kyunghyun Cho n'est pas disponible

Kyunghyun Cho

Alumni

Publications

Synthetic Data Generation and Joint Learning for Robust Code-Mixed Translation
Hi Bn
Ramakrishna Appicharla
Kamal Kumar
Asif Gupta
Yoshua Ben­
Ondrej Bojar
Christian Buck
Christian Federmann
Yong Cheng
Lu Jiang
Wolfgang Macherey
Alexis Conneau
Guillaume Lample. 2019
Cross­
Yinhan Liu
Jiatao Gu
Naman Goyal
Sergey Xian Li … (voir 45 de plus)
Carol Myers­Scotton. 1997
El Moatez
Billah Nagoudi
AbdelRahim Elmadany
Muhammad Abdul­Mageed. 2021. Investigat­
Myle Ott
Sergey Edunov
Alexei R Baevski
Parth Patwa
Gustavo Aguilar
Sudipta Kar
Suraj
Srinivas Pandey
Björn Pykl
Gambäck
Tanmoy
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
dukasz Kaiser
Illia Polosukhin. 2017
Attention
Genta Indra Winata
Andrea Madotto
Chien­Sheng
Wu Pascale
Fung
Code­switching
ing. In
Felix Wu
Angela Fan
Linting Xue
Noah Constant
Mihir Adam Roberts
Rami Kale
Aditya Al­Rfou
Aditya Siddhant
Barua
Shuyan Zhou
Xiangkai Zeng
Antonios Yingqi Zhou
Anastasopoulos Graham
Neubig. 2019
Im­
The widespread online communication in a modern multilingual world has provided opportunities to blend more than one language (aka code-mixe… (voir plus)d language) in a single utterance. This has resulted a formidable challenge for the computational models due to the scarcity of annotated data and presence of noise. A potential solution to mitigate the data scarcity problem in low-resource setup is to leverage existing data in resource-rich language through translation. In this paper, we tackle the problem of code-mixed (Hinglish and Bengalish) to English machine translation. First, we synthetically develop HINMIX, a parallel corpus of Hinglish to English, with ~4.2M sentence pairs. Subsequently, we propose RCMT, a robust perturbation based joint-training model that learns to handle noise in the real-world code-mixed text by parameter sharing across clean and noisy words. Further, we show the adaptability of RCMT in a zero-shot setup for Bengalish to English translation. Our evaluation and comprehensive analyses qualitatively and quantitatively demonstrate the superiority of RCMT over state-of-the-art code-mixed and robust translation methods.
Fine-grained attention mechanism for neural machine translation
Dynamic Neural Turing Machine with Continuous and Discrete Addressing Schemes
We extend the neural Turing machine (NTM) model into a dynamic neural Turing machine (D-NTM) by introducing trainable address vectors. This … (voir plus)addressing scheme maintains for each memory cell two separate vectors, content and address vectors. This allows the D-NTM to learn a wide variety of location-based addressing strategies, including both linear and nonlinear ones. We implement the D-NTM with both continuous and discrete read and write mechanisms. We investigate the mechanisms and effects of learning to read and write into a memory through experiments on Facebook bAbI tasks using both a feedforward and GRU controller. We provide extensive analysis of our model and compare different variations of neural Turing machines on this task. We show that our model outperforms long short-term memory and NTM variants. We provide further experimental results on the sequential MNIST, Stanford Natural Language Inference, associative recall, and copy tasks.
Boundary Seeking GANs
Athul Jacob
Adam Trischler
Gerry Che
Boundary Seeking GANs
Athul Jacob
Adam Trischler
Gerry Che
Generative adversarial networks are a learning framework that rely on training a discriminator to estimate a measure of difference between a… (voir plus) target and generated distributions. GANs, as normally formulated, rely on the generated samples being completely differentiable w.r.t. the generative parameters, and thus do not work for discrete data. We introduce a method for training GANs with discrete data that uses the estimated difference measure from the discriminator to compute importance weights for generated samples, thus providing a policy gradient for training the generator. The importance weights have a strong connection to the decision boundary of the discriminator, and we call our method boundary-seeking GANs (BGANs). We demonstrate the effectiveness of the proposed algorithm with discrete image and character-based natural language generation. In addition, the boundary-seeking objective extends to continuous data, which can be used to improve stability of training, and we demonstrate this on Celeba, Large-scale Scene Understanding (LSUN) bedrooms, and Imagenet without conditioning.
Boundary Seeking GANs
Athul Jacob
Adam Trischler
Gerry Che
Generative adversarial networks are a learning framework that rely on training a discriminator to estimate a measure of difference between a… (voir plus) target and generated distributions. GANs, as normally formulated, rely on the generated samples being completely differentiable w.r.t. the generative parameters, and thus do not work for discrete data. We introduce a method for training GANs with discrete data that uses the estimated difference measure from the discriminator to compute importance weights for generated samples, thus providing a policy gradient for training the generator. The importance weights have a strong connection to the decision boundary of the discriminator, and we call our method boundary-seeking GANs (BGANs). We demonstrate the effectiveness of the proposed algorithm with discrete image and character-based natural language generation. In addition, the boundary-seeking objective extends to continuous data, which can be used to improve stability of training, and we demonstrate this on Celeba, Large-scale Scene Understanding (LSUN) bedrooms, and Imagenet without conditioning.
First Result on Arabic Neural Machine Translation
Amjad Almahairi
Nizar Habash
Neural machine translation has become a major alternative to widely used phrase-based statistical machine translation. We notice however tha… (voir plus)t much of research on neural machine translation has focused on European languages despite its language agnostic nature. In this paper, we apply neural machine translation to the task of Arabic translation (Ar En) and compare it against a standard phrase-based translation system. We run extensive comparison using various configurations in preprocessing Arabic script and show that the phrase-based and neural translation systems perform comparably to each other and that proper preprocessing of Arabic script has a similar effect on both of the systems. We however observe that the neural machine translation significantly outperform the phrase-based system on an out-of-domain test set, making it attractive for real-world deployment.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
J. Bergstra
Josh Bleecher Snyder
Paul F. Christiano
Marc-Alexandre Côté
Myriam Côté
Julien Demouth
Sander Dieleman
M'elanie Ducoffe
Ziye Fan
Mathieu Germain
Ian J. Goodfellow
Matthew Graham
Balázs Hidasi
Arjun Jain
S'ebastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Pascal Lamblin
Eric P. Larsen
S. Lee
Simon-mark Lefrancois
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
R. McGibbon
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Samira Shabanian
Sigurd Spieckermann
S. Subramanyam
Gijs van Tulder
Joseph P. Turian
Sebastian Urban
Dustin J. Webb
M. Willson
Lijun Xue
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
Josh Bleecher Snyder
Paul F. Christiano
Marc-Alexandre Côté
Myriam Côté
Julien Demouth
Sander Dieleman
M'elanie Ducoffe
Ziye Fan
Mathieu Germain
Ian G Goodfellow
Matthew Graham
Balázs Hidasi
Arjun Jain
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Pascal Lamblin
Eric Larsen
S. Lee
Simon-mark Lefrancois
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
R. McGibbon
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Samira Shabanian
Sigurd Spieckermann
S. Subramanyam
Gijs van Tulder
Sebastian Urban
Dustin J. Webb
M. Willson
Lijun Xue
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.