Portrait de Jian Tang

Jian Tang

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, HEC Montréal, Département de sciences de la décision
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle (DIRO)
Fondateur, BioGeometry
Sujets de recherche
Apprentissage profond
Biologie computationnelle
Modèles génératifs
Modélisation moléculaire
Réseaux de neurones en graphes

Biographie

Jian Tang est professeur agrégé au département de sciences de la décision de HEC. Il est aussi professeur associé au département informatique et recherche opérationnelle (DIRO) de l'Université de Montréal et un membre académique principal à Mila – Institut québécois d’intelligence artificielle. Il est titulaire d'une chaire de recherche en IA Canada-CIFAR et le fondateur de BioGeometry, une entreprise en démarrage spécialisée dans l'IA générative pour la découverte d'anticorps. Ses principaux domaines de recherche sont les modèles génératifs profonds, l'apprentissage automatique des graphes et leurs applications à la découverte de médicaments. Il est un leader international dans le domaine de l'apprentissage automatique des graphes, et son travail représentatif sur l'apprentissage de la représentation des nœuds, LINE, a été largement reconnu et cité plus de 5 000 fois. Il a également réalisé de nombreux travaux pionniers sur l'IA pour la découverte de médicaments, notamment le premier cadre d'apprentissage automatique à source ouverte pour la découverte de médicaments, TorchDrug et TorchProtein.

Étudiants actuels

Collaborateur·rice de recherche
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Carnegie Mellon University
Doctorat - UdeM
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche
Doctorat - UdeM

Publications

Multi-objective PSO semi-supervised random forest method for dioxin soft sensor
Wen Xu
Heng Xia
Wen Yu
JunFei Qiao
Multi-reservoir ESN-based prediction strategy for dynamic multi-objective optimization
Cuili Yang
Danlei Wang
JunFei Qiao
Wen Yu
NOx emissions prediction for MSWI process based on dynamic modular neural network
Haoshan Duan
Xi Meng
JunFei Qiao
Online Measurement of Dioxin Emission in Solid Waste Incineration Using Fuzzy Broad Learning
Heng Xia
Wen Yu
JunFei Qiao
Dioxin (DXN) is a persistent organic pollutant produced from municipal solid waste incineration (MSWI) processes. It is a crucial environmen… (voir plus)tal indicator to minimize emission concentration by using optimization control, but it is difficult to monitor in real time. Aiming at online soft-sensing of DXN emission, a novel fuzzy tree broad learning system (FTBLS) is proposed, which includes offline training and online measurement. In the offline training part, weighted k-means is presented to construct a typical sample pool for reduced learning costs of offline and online phases. Moreover, the novel FTBLS, which contains a feature mapping layer, enhance layer, and increment layer, by replacing the fuzzy decision tree with neurons applied to construct the offline model. In the online measurement part, recursive principal component analysis is used to monitor the time-varying characteristic of the MSWI process. To measure DXN emission, offline FTBLS is reused for normal samples; for drift samples, fast incremental learning is used for online updates. A DXN data from the actual MSWI process is employed to prove the usefulness of FTBLS, where the RMSE of training and testing data are 0.0099 and 0.0216, respectively. This result shows that FTBLS can effectively realize DXN online prediction.
Tree Broad Learning System for Small Data Modeling.
Heng Xia
Wen Yu
JunFei Qiao
Broad learning system based on neural network (BLS-NN) has poor efficiency for small data modeling with various dimensions. Tree-based BLS (… (voir plus)TBLS) is designed for small data modeling by introducing nondifferentiable modules and an ensemble strategy to the traditional broad learning system (BLS). TBLS replaces the neurons of BLS with the tree modules to map the input data. Moreover, we present three new TBLS variant methods and their incremental learning implementations, which are motivated by deep, broad, and ensemble learning. Their major distinction is reflected in the incremental learning strategies based on: 1) mean square error (mse); 2) pseudo-inverse; and 3) pseudo-inverse theory and stack representation. Therefore, this study further explores the domain of BLS based on the nondifferentiable modules. The simulations are compared with some state-of-the-art (SOTA) BLS-NN and tree methods under high-, medium-, and low-dimensional benchmark datasets. Results show that the proposed method outperforms the BLS-NN, and the modeling accuracy is remarkably improved with the small training data of the proposed TBLS.
Zero-shot Logical Query Reasoning on any Knowledge Graph
Mikhail Galkin
Jincheng Zhou
Bruno Ribeiro
Zhaocheng Zhu
Complex logical query answering (CLQA) in knowledge graphs (KGs) goes beyond simple KG completion and aims at answering compositional querie… (voir plus)s comprised of multiple projections and logical operations. Existing CLQA methods that learn parameters bound to certain entity or relation vocabularies can only be applied to the graph they are trained on which requires substantial training time before being deployed on a new graph. Here we present UltraQuery, an inductive reasoning model that can zero-shot answer logical queries on any KG. The core idea of UltraQuery is to derive both projections and logical operations as vocabulary-independent functions which generalize to new entities and relations in any KG. With the projection operation initialized from a pre-trained inductive KG reasoning model, UltraQuery can solve CLQA on any KG even if it is only finetuned on a single dataset. Experimenting on 23 datasets, UltraQuery in the zero-shot inference mode shows competitive or better query answering performance than best available baselines and sets a new state of the art on 14 of them.
Giant Correlated Gap and Possible Room-Temperature Correlated States in Twisted Bilayer MoS_{2}.
Fanfan Wu
Qiaoling Xu
Qinqin Wang
Yanbang Chu
Lu Li
Jieying Liu
Jinpeng Tian
Yiru Ji
Le Liu
Yalong Yuan
Zhiheng Huang
Jiaojiao Zhao
Xiaozhou Zan
Kenji Watanabe
Takashi Taniguchi
Dongxia Shi
Gangxu Gu
Yang Xu
Lede Xian … (voir 3 de plus)
Wei Yang
Luojun Du
Guangyu Zhang
Moiré superlattices have emerged as an exciting condensed-matter quantum simulator for exploring the exotic physics of strong electronic co… (voir plus)rrelations. Notable progress has been witnessed, but such correlated states are achievable usually at low temperatures. Here, we report evidence of possible room-temperature correlated electronic states and layer-hybridized SU(4) model simulator in AB-stacked MoS_{2} homobilayer moiré superlattices. Correlated insulating states at moiré band filling factors v=1, 2, 3 are unambiguously established in twisted bilayer MoS_{2}. Remarkably, the correlated electronic state at v=1 shows a giant correlated gap of ∼126  meV and may persist up to a record-high critical temperature over 285 K. The realization of a possible room-temperature correlated state with a large correlated gap in twisted bilayer MoS_{2} can be understood as the cooperation effects of the stacking-specific atomic reconstruction and the resonantly enhanced interlayer hybridization, which largely amplify the moiré superlattice effects on electronic correlations. Furthermore, extreme large nonlinear Hall responses up to room temperature are uncovered near correlated electronic states, demonstrating the quantum geometry of moiré flat conduction band.
Multi-modal Molecule Structure-text Model for Text-based Retrieval and Editing
Shengchao Liu
Weili Nie
Chengpeng Wang
Jiarui Lu
Zhuoran Qiao
Ling Liu
Chaowei Xiao
Animashree Anandkumar
There is increasing adoption of artificial intelligence in drug discovery. However, existing studies use machine learning to mainly utilize … (voir plus)the chemical structures of molecules but ignore the vast textual knowledge available in chemistry. Incorporating textual knowledge enables us to realize new drug design objectives, adapt to text-based instructions and predict complex biological activities. Here we present a multi-modal molecule structure-text model, MoleculeSTM, by jointly learning molecules' chemical structures and textual descriptions via a contrastive learning strategy. To train MoleculeSTM, we construct a large multi-modal dataset, namely, PubChemSTM, with over 280,000 chemical structure-text pairs. To demonstrate the effectiveness and utility of MoleculeSTM, we design two challenging zero-shot tasks based on text instructions, including structure-text retrieval and molecule editing. MoleculeSTM has two main properties: open vocabulary and compositionality via natural language. In experiments, MoleculeSTM obtains the state-of-the-art generalization ability to novel biochemical concepts across various benchmarks.
Pretrainable Geometric Graph Neural Network for Antibody Affinity Maturation
Huiyu Cai
Zuobai Zhang
Mingkai Wang
Bozitao Zhong
Yanling Wu
Tianlei Ying
In the realm of antibody therapeutics development, increasing the binding affinity of an antibody to its target antigen is a crucial task. T… (voir plus)his paper presents GearBind, a pretrainable deep neural network designed to be effective for in silico affinity maturation. Leveraging multi-level geometric message passing alongside contrastive pretraining on protein structural data, GearBind capably models the complex interplay of atom-level interactions within protein complexes, surpassing previous state-of-the-art approaches on SKEMPI v2 in terms of Pearson correlation, mean absolute error (MAE) and root mean square error (RMSE). In silico experiments elucidate that pretraining helps GearBind become sensitive to mutation-induced binding affinity changes and reflective of amino acid substitution tendency. Using an ensemble model based on pretrained GearBind, we successfully optimize the affinity of CR3022 to the spike (S) protein of the SARS-CoV-2 Omicron strain. Our strategy yields a high success rate with up to 17-fold affinity increase. GearBind proves to be an effective tool in narrowing the search space for in vitro antibody affinity maturation, underscoring the utility of geometric deep learning and adept pre-training in macromolecule interaction modeling.
Pretrainable Geometric Graph Neural Network for Antibody Affinity Maturation
Huiyu Cai
Zuobai Zhang
Mingkai Wang
Bozitao Zhong
Yanling Wu
Tianlei Ying
PDB-Struct: A Comprehensive Benchmark for Structure-based Protein Design
Chuanrui Wang
Bozitao Zhong
Zuobai Zhang
Narendra Chaudhary
Sanchit Misra
Structure-based protein design has attracted increasing interest, with numerous methods being introduced in recent years. However, a univers… (voir plus)ally accepted method for evaluation has not been established, since the wet-lab validation can be overly time-consuming for the development of new algorithms, and the
PDB-Struct: A Comprehensive Benchmark for Structure-based Protein Design
Chuanrui Wang
Bozitao Zhong
Zuobai Zhang
Narendra Chaudhary
Sanchit Misra
Structure-based protein design has attracted increasing interest, with numerous methods being introduced in recent years. However, a univers… (voir plus)ally accepted method for evaluation has not been established, since the wet-lab validation can be overly time-consuming for the development of new algorithms, and the