Portrait de Jackie Cheung

Jackie Cheung

Membre académique principal
Chaire en IA Canada-CIFAR
Directeur scientifique adjoint, Mila, Professeur agrégé, McGill University, École d'informatique
Chercheur consultant, Microsoft Research
Sujets de recherche
Apprentissage automatique médical
Apprentissage profond
Raisonnement
Traitement du langage naturel

Biographie

Je suis professeur agrégé à l'École d’informatique de l’Université McGill et chercheur consultant à Microsoft Research.

Mon groupe mène des recherches sur le traitement du langage naturel (NLP), un domaine de l'intelligence artificielle qui implique la construction de modèles informatiques de langages humains tels que l'anglais ou le français. Le but de nos recherches est de développer des méthodes informatiques de compréhension du texte et de la parole, afin de générer un langage fluide et adapté au contexte.

Dans notre laboratoire, nous étudions des techniques statistiques d’apprentissage automatique pour analyser et faire des prédictions sur la langue. Plusieurs projets en cours incluent la synthèse de fiction, l'extraction d'événements à partir d’un texte et l'adaptation de la langue à différents genres.

Étudiants actuels

Collaborateur·rice alumni - McGill
Maîtrise recherche - McGill
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Doctorat - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Stagiaire de recherche - McGill
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Postdoctorat - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Stagiaire de recherche - McGill University
Stagiaire de recherche - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Doctorat - McGill
Baccalauréat - McGill
Doctorat - McGill
Stagiaire de recherche - McGill University
Maîtrise recherche - McGill

Publications

A Multifaceted Framework to Evaluate Evasion, Content Preservation, and Misattribution in Authorship Obfuscation Techniques
Malik H. Altakrori
Thomas Scialom
Does Pre-training Induce Systematic Inference? How Masked Language Models Acquire Commonsense Knowledge
MaskEval: Weighted MLM-Based Evaluation for Text Summarization and Simplification
Yu Lu Liu
Rachel Bawden
Thomas Scaliom
Benoı̂t Sagot
Characterizing Idioms: Conventionality and Contingency
Michaela Socolof
Michael Wagner
Idioms are unlike most phrases in two important ways. First, words in an idiom have non-canonical meanings. Second, the non-canonical meanin… (voir plus)gs of words in an idiom are contingent on the presence of other words in the idiom. Linguistic theories differ on whether these properties depend on one another, as well as whether special theoretical machinery is needed to accommodate idioms. We define two measures that correspond to the properties above, and we show that idioms fall at the expected intersection of the two dimensions, but that the dimensions themselves are not correlated. Our results suggest that introducing special machinery to handle idioms may not be warranted.
Hallucinated but Factual! Inspecting the Factuality of Hallucinations in Abstractive Summarization
Meng Cao
Yue Dong
Using Interactive Feedback to Improve the Accuracy and Explainability of Question Answering Systems Post-Deployment
Zichao Li
Prakhar Sharma
Xing Han Lu
Using Interactive Feedback to Improve the Accuracy and Explainability of Question Answering Systems Post-Deployment
Zichao Li
Prakhar Sharma
Xing Han Lu
Most research on question answering focuses on the pre-deployment stage; i.e., building an accurate model for deployment.In this paper, we a… (voir plus)sk the question: Can we improve QA systems further post-deployment based on user interactions? We focus on two kinds of improvements: 1) improving the QA system’s performance itself, and 2) providing the model with the ability to explain the correctness or incorrectness of an answer.We collect a retrieval-based QA dataset, FeedbackQA, which contains interactive feedback from users. We collect this dataset by deploying a base QA system to crowdworkers who then engage with the system and provide feedback on the quality of its answers.The feedback contains both structured ratings and unstructured natural language explanations.We train a neural model with this feedback data that can generate explanations and re-score answer candidates. We show that feedback data not only improves the accuracy of the deployed QA system but also other stronger non-deployed systems. The generated explanations also help users make informed decisions about the correctness of answers.
Why Exposure Bias Matters: An Imitation Learning Perspective of Error Accumulation in Language Generation
Kushal Arora
Layla El Asri
Hareesh Bahuleyan
Current language generation models suffer from issues such as repetition, incoherence, and hallucinations. An often-repeated hypothesis for … (voir plus)this brittleness of generation models is that it is caused by the training and the generation procedure mismatch, also referred to as exposure bias. In this paper, we verify this hypothesis by analyzing exposure bias from an imitation learning perspective. We show that exposure bias leads to an accumulation of errors during generation, analyze why perplexity fails to capture this accumulation of errors, and empirically show that this accumulation results in poor generation quality.
Investigating the Performance of Transformer-Based NLI Models on Presuppositional Inferences
Jad Kabbara
Presuppositions are assumptions that are taken for granted by an utterance, and identifying them is key to a pragmatic interpretation of lan… (voir plus)guage. In this paper, we investigate the capabilities of transformer models to perform NLI on cases involving presupposition. First, we present simple heuristics to create alternative “contrastive” test cases based on the ImpPres dataset and investigate the model performance on those test cases. Second, to better understand how the model is making its predictions, we analyze samples from sub-datasets of ImpPres and examine model performance on them. Overall, our findings suggest that NLI-trained transformer models seem to be exploiting specific structural and lexical cues as opposed to performing some kind of pragmatic reasoning.
Learning with Rejection for Abstractive Text Summarization
Meng Cao
Yue Dong
Jingyi He
Question Personalization in an Intelligent Tutoring System
Sabina Elkins
Robert Belfer
Ekaterina Kochmar
Iulian V. Serban
Source-summary Entity Aggregation in Abstractive Summarization.
José-ángel González
Annie Priyadarshini Louis