Portrait de Jackie Cheung

Jackie Cheung

Membre académique principal
Chaire en IA Canada-CIFAR
Directeur scientifique adjoint, Mila, Professeur agrégé, McGill University, École d'informatique
Chercheur consultant, Microsoft Research
Sujets de recherche
Apprentissage automatique médical
Apprentissage profond
Raisonnement
Traitement du langage naturel

Biographie

Je suis professeur agrégé à l'École d’informatique de l’Université McGill et chercheur consultant à Microsoft Research.

Mon groupe mène des recherches sur le traitement du langage naturel (NLP), un domaine de l'intelligence artificielle qui implique la construction de modèles informatiques de langages humains tels que l'anglais ou le français. Le but de nos recherches est de développer des méthodes informatiques de compréhension du texte et de la parole, afin de générer un langage fluide et adapté au contexte.

Dans notre laboratoire, nous étudions des techniques statistiques d’apprentissage automatique pour analyser et faire des prédictions sur la langue. Plusieurs projets en cours incluent la synthèse de fiction, l'extraction d'événements à partir d’un texte et l'adaptation de la langue à différents genres.

Étudiants actuels

Collaborateur·rice alumni - McGill
Maîtrise recherche - McGill
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Doctorat - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Stagiaire de recherche - McGill
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Postdoctorat - McGill
Maîtrise recherche - McGill
Maîtrise recherche - McGill
Stagiaire de recherche - McGill University
Stagiaire de recherche - McGill
Doctorat - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Doctorat - McGill
Baccalauréat - McGill
Doctorat - McGill
Stagiaire de recherche - McGill University
Maîtrise recherche - McGill

Publications

Detecting Large Concept Extensions for Conceptual Analysis
L. Chartrand
Mohamed Bouguessa
Nifty Assignments
Nick Parlante
Julie Zelenski
Dave Feinberg
Kunal Mishra
Josh Hug
Kevin Wayne
Michael Guerzhoy
François Pitt
I suspect that students learn more from our programming assignments than from our much sweated-over lectures, with their slide transitions, … (voir plus)clip art, and joke attempts. A great assignment is deliberate about where the student hours go, concentrating the student's attention on material that is interesting and useful. The best assignments solve a problem that is topical and entertaining, providing motivation for the whole stack of work. Unfortunately, creating great programming assignments is both time consuming and error prone. The Nifty Assignments special session is all about promoting and sharing the ideas and ready-to-use materials of successful assignments.
Computer-Assisted Conceptual Analysis of Textual Data as Applied to Philosophical Corpuses
Jean Guy Meunier
L. Chartrand
Mathieu Valette
Marie-noëlle Bayle