Le Studio d'IA pour le climat de Mila vise à combler l’écart entre la technologie et l'impact afin de libérer le potentiel de l'IA pour lutter contre la crise climatique rapidement et à grande échelle.
Le programme a récemment publié sa première note politique, intitulée « Considérations politiques à l’intersection des technologies quantiques et de l’intelligence artificielle », réalisée par Padmapriya Mohan.
Hugo Larochelle nommé directeur scientifique de Mila
Professeur associé à l’Université de Montréal et ancien responsable du laboratoire de recherche en IA de Google à Montréal, Hugo Larochelle est un pionnier de l’apprentissage profond et fait partie des chercheur·euses les plus respecté·es au Canada.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Most natural language reasoning tasks in the research community assume consistent input knowledge. Nevertheless, real-world scenarios often … (voir plus)involve inconsistent information, which might lead to divergent conclusions and are typically associated with varying levels of uncertainty. This raises a key research question: can large language models (LLMs) effectively handle uncertainty in their reasoning process to maximize knowledge consistency?
In this paper, we propose a framework for evaluating reasoning over inconsistent knowledge. Our approach models uncertainty via weights of logical rules, leveraging Markov logic networks (MLN), which integrate probabilistic reasoning with first-order logic. This enables us to quantify inconsistencies in knowledge bases, and hence rigorously evaluate LLM reasoning. We introduce two tasks using this framework: 1) QA, which involves answering questions by integrating inconsistent knowledge; and 2) knowledge rectification, where we aim to rectify language models' acquired knowledge to improve consistency. We curate a dataset of 3,000 MLN-formatted knowledge bases to implement these tasks. We evaluate state-of-the-art LLMs on these tasks and highlight their limitations in uncertainty-aware reasoning over inconsistent logical knowledge.
Scientific peer review is essential for the quality of academic publications. However, the increasing number of paper submissions to confere… (voir plus)nces has strained the reviewing process. This surge poses a burden on area chairs who have to carefully read an ever-growing volume of reviews and discern each reviewer's main arguments as part of their decision process. In this paper, we introduce \sys, a summarization method designed to offer a concise yet comprehensive overview of scholarly reviews. Unlike traditional consensus-based methods, \sys extracts both common and unique opinions from the reviews. We introduce novel uniqueness scores based on the Rational Speech Act framework to identify relevant sentences in the reviews. Our method aims to provide a pragmatic glimpse into all reviews, offering a balanced perspective on their opinions. Our experimental results with both automatic metrics and human evaluation show that \sys generates more discriminative summaries than baseline methods in terms of human evaluation while achieving comparable performance with these methods in terms of automatic metrics.
The potential of using a large language model (LLM) as a knowledge base (KB) has sparked significant interest. To maintain the knowledge acq… (voir plus)uired by LLMs, we need to ensure that the editing of learned facts respects internal logical constraints, which are known as dependency of knowledge. Existing work on editing LLMs has partially addressed the issue of dependency, when the editing of a fact should apply to its lexical variations without disrupting irrelevant ones. However, they neglect the dependency between a fact and its logical implications.
We propose an evaluation protocol with an accompanying question-answering dataset, StandUp, that provides a comprehensive assessment of the editing process considering the above notions of dependency. Our protocol involves setting up a controlled environment in which we edit facts and monitor their impact on LLMs, along with their implications based on If-Then rules. Extensive experiments on StandUp show that existing knowledge editing methods are sensitive to the surface form of knowledge, and that they have limited performance in inferring the implications of edited facts.