Portrait de Hanane Dagdougui

Hanane Dagdougui

Membre académique associé
Professeure titulaire, Polytechnique Montréal, Département de mathématiques et de génie industriel
Sujets de recherche
Apprentissage profond
Optimisation
Systèmes distribués

Biographie

Hanane Dagdougui est professeure titulaire à Polytechnique Montréal et membre académique associée à Mila - Institut québécois d'intelligence artificielle. Elle a obtenu le doctorat en ingénierie des systèmes de la Faculté d'ingénierie de Gênes et des Mines Paris-Tech en France, dans le cadre d'un programme international conjoint en 2011. Avant de rejoindre Polytechnique Montréal en 2017, elle a été assistante de recherche au département d'informatique, de bio-ingénierie, de robotique et d'ingénierie des systèmes de l'Université de Gênes en 2013. De 2013 à 2016, elle a été chercheuse institutionnelle au département de génie électrique de l'ÉTS Montréal.

Ses recherches portent sur la théorie de l'optimisation distribuée et les applications de l'optimisation mathématique. Elle s'intéresse particulièrement aux applications de l'optimisation mathématique et des techniques d'apprentissage automatique aux problèmes des réseaux intelligents, des micro-réseaux et des bâtiments intelligents. Ses recherches portent également sur la modélisation technico-économique et la planification des systèmes basés sur les énergies renouvelables, la réponse à la demande et le transport électrique.

Étudiants actuels

Maîtrise recherche - Polytechnique
Superviseur⋅e principal⋅e :
Doctorat - Polytechnique
Doctorat - Polytechnique

Publications

ADMM-Based Hierarchical Single-Loop Framework for EV Charging Scheduling Considering Power Flow Constraints
Sina Kiani
Keyhan Sheshyekani
This article presents a three-layer hierarchical distributed framework for optimal electric vehicle charging scheduling (EVCS). The proposed… (voir plus) hierarchical EVCS structure includes a distribution system operator (DSO) at the top layer, electric vehicle aggregators (EVAs) at the middle layer, and electric vehicles (EVs) charging stations at the bottom layer. A single-loop iterative algorithm is developed to solve the EVCS problem by combining the alternating direction method of multipliers (ADMM) and the distribution line power flow model (DistFlow). Using the single-loop structure, the primal variables of all agents are updated simultaneously at every iteration resulting in a reduced number of iterations and faster convergence. The developed framework is employed to provide charging cost minimization at the EV charging stations level, peak load shaving at the EVAs level, and voltage regulation at the DSO level. In order to further improve the performance of the optimization framework, a neural network-based load forecasting model is implemented to include the uncertainties related to non-EV residential load demand. The efficiency and the optimality of the proposed EVCS framework are evaluated through numerical simulations, conducted for a modified IEEE 13 bus test feeder with different EV penetration levels.
An Analytic Hierarchy Process based approach for assessing the performance of photovoltaic solar power plants
Meryam Chafiq
Ismail Belhaj
Abdelali Djdiaa
Hicham Bouzekri
Abdelaziz Berrado
Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities.
Eslam G. Al-Sakkari
Ahmed Ragab
Daria Camilla Boffito
Mouloud Amazouz
Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities.
Eslam G. Al-Sakkari
Ahmed Ragab
Daria Camilla Boffito
Mouloud Amazouz
Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities.
Eslam G. Al-Sakkari
Ahmed Ragab
Daria Camilla Boffito
Mouloud Amazouz
Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities
Eslam G. Al-Sakkari
Ahmed Ragab
Daria C. Boffito
Mouloud Amazouz
Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities.
Eslam G. Al-Sakkari
Ahmed Ragab
Daria Camilla Boffito
Mouloud Amazouz
Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities.
Eslam G. Al-Sakkari
Ahmed Ragab
Daria Camilla Boffito
Mouloud Amazouz
Game Theoretical Formulation for Residential Community Microgrid via Mean Field Theory: Proof of Concept
Mohamad Aziz
Issmail ElHallaoui
Incentive-based demand response aggregators are widely recognized as a powerful strategy to increase the flexibility of residential communit… (voir plus)y MG (RCM) while allowing consumers’ assets to participate in the operation of the power system in critical peak times. RCM implementing demand response approaches are of high interest as collectively, they have a high impact on shaping the demand curve during peak time while providing a wide range of economic and technical benefits to consumers and utilities. The penetration of distributed energy resources such as battery energy storage and photovoltaic systems introduces additional flexibility to manage the community loads and increase revenue. This letter proposes a game theoretical formulation for an incentive-based residential community microgrid, where an incentive-based pricing mechanism is developed to encourage peak demand reduction and share the incentive demand curve with the residential community through the aggregator. The aggregator’s objective is to maximize the welfare of the residential community by finding the optimal community equilibrium electricity price. Each household communicates with each other and with the distributed system operator (DSO) through the aggregator and aims to minimize the local electricity cost.
The Bifurcation Method: White-Box Observation Perturbation Attacks on Reinforcement Learning Agents on a Cyber Physical System
KIERNAN BRODA-MILIAN
Ranwa Al Mallah
Deep Learning Model for Multi-Step Ahead Prediction of Solar Irradiance: Case of Study of Morocco
Saad Benbrahim
Ismail Belhaj
Abdelali Djdiaa
Hicham Bouzekri
Abdelaziz Berrado
Accurate solar irradiance forecasting is crucial for managing energy generation and consumption in the rapidly evolving landscape of renewab… (voir plus)le energy. It enables renewable energy operators to make informed decisions and maximize their output. This study employs deep learning-based forecasting models to predict the Global Horizontal Irradiance (GHI) of the R&D platform situated in Ouarzazate, Morocco. A sensitivity analysis was conducted on multiple scenarios for a one day-ahead horizon. Moreover, a forecasting technique that encompasses numerous horizons, ranging from one day to three days in advance, was evaluated. The study's findings suggest that the encoder-decoder model we proposed exhibited superior performance compared to the other models tested and produced dependable predictions.
Towards an Effective Electrical Market Design: Identifying and Defining Key Criteria for Decision-Making
Souhaila Chiguer
Ismail Belhaj
Abdelali Djdiaa
Hicham Bouzekri
Abdelaziz Berrado
In our changing energy landscape, electricity is taking a major role in achieving decarbonization goals. Electricity can be a clean and effi… (voir plus)cient source of energy, and it is well-suited to help countries meet their climate goals. However, the electrical market is complex and constantly evolving, and it is important to carefully choose the design elements of the market to ensure that it is meeting its objectives. In this context, evaluating an electrical market's effectiveness requires a multifaceted approach that takes into account a range of elements, from environmental impact to economic viability. This paper provides an overview of several evaluation methods for different objectives to finally select the key criteria to consider in assisting decision-makers, regulators, and stakeholders in developing an electricity market that is not only effective but also reliable and sustainable.