Portrait de Guillaume Dumas

Guillaume Dumas

Membre académique associé
Professeur agrégé, Université de Montréal, Département de psychiatrie et d’addictologie
Professeur adjoint, McGill University, Département de psychiatrie
Sujets de recherche
Apprentissage automatique médical
Apprentissage par renforcement
Apprentissage profond
Biologie computationnelle
Neurosciences computationnelles
Systèmes dynamiques
Théorie de l'apprentissage automatique

Biographie

Guillaume Dumas est professeur agrégé de psychiatrie computationnelle à la Faculté de médecine de l'Université de Montréal et chercheur principal du laboratoire de psychiatrie de précision et de physiologie sociale du Centre de recherche du CHU Sainte-Justine. Il est titulaire de la chaire IVADO IA en santé mentale et chercheur-boursier junior 1 du Fonds de recherche du Québec - Santé (FRQS) dans le domaine de l’ IA en santé et de la santé numérique. En 2023, il a été retenu dans le cadre du Programme des chercheurs mondiaux CIFAR-Azrieli pour le programme de recherche Cerveau, esprit et conscience. Il a également été nommé parmi les Futurs leaders canadiens de la recherche sur le cerveau par la Fondation Brain Canada.

Il a auparavant été chercheur permanent en neurosciences et en biologie computationnelle à l'Institut Pasteur (Paris, France), ainsi que chercheur postdoctoral au Center for Complex Systems and Brain Sciences à l’Université Florida Atlantic (FAU), aux États-Unis. Il est titulaire d'un diplôme d'ingénieur en ingénierie avancée et informatique (École centrale Paris), de deux masters (physique théorique, Université Paris-Saclay; sciences cognitives, ENS/EHESS/Paris 5) et d'un doctorat en neurosciences cognitives (Sorbonne Université).

Ses recherches visent à combiner l’intelligence artificielle, les neurosciences cognitives et la médecine numérique à travers un programme interdisciplinaire suivant deux axes principaux :

- L’intelligence artificielle en santé mentale, par la création de nouveaux algorithmes pour étudier le développement de l'architecture cognitive humaine et pour fournir une médecine personnalisée en neuropsychiatrie grâce à des données allant du génome à celles des téléphones intelligents;

- Les neurosciences sociales en intelligence artificielle, par la traduction de la recherche fondamentale sur le cerveau et le formalisme des systèmes dynamiques en des modèles hybrides neurocomputationnels et d’apprentissage automatique (NeuroML) et de nouvelles architectures présentant des capacités d'apprentissage social (NeuroIA Sociale et IHM).

Étudiants actuels

Maîtrise recherche - UdeM
Doctorat - UdeM
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Doctorat - UdeM
Superviseur⋅e principal⋅e :

Publications

Impact de l'antibiothérapie par Daptomycine dans le traitement des bactériémies à Enterococcus faecium en réanimation : l'étude rétrospective multicentrique ENTERODAPTO.
S. Herbel
L. Chantelot
J. Massol
Q. Moyon
J. Ricard
E. Azoulay
C. Hauw-Berlemont
E. Maury
T. Urbina
Response letter to “Confounding by indication and exposure misclassification may undermine corticosteroid effect estimates in ICU patients with alcohol-related hepatitis”
Maxime Gasperment
Hafid AIT-OUFELLA
Persistent signs of poisoning after massive drug ingestion: move the ultrasound probe to the stomach.
N. Lautrou-cabasson
H. Pirollet
C. Lombois
Proceedings of 1st Workshop on Advancing Artificial Intelligence through Theory of Mind
Mouad Abrini
Omri Abend
Dina M. Acklin
Henny Admoni
Gregor Aichinger
Nitay Alon
Zahra Ashktorab
Ashish Atreja
Moises Auron
Alexander Aufreiter
Raghav Awasthi
Soumya Banerjee
Joseph Barnby
Rhea Basappa
Severin Bergsmann
Djallel Bouneffouf
Patrick Callaghan
Marc Cavazza
Thierry Chaminade
Sonia Chernova … (voir 88 de plus)
Mohamed Chetouan
Moumita Choudhury
Axel Cleeremans
J. Cywinski
Fabio Cuzzolin
Hokin Deng
N'yoma Diamond
C. D. Pasquasio
Max J. van Duijn
Mahapatra Dwarikanath
Qingying Gao
Ashok Goel
Rebecca R. Goldstein
Matthew C. Gombolay
Gabriel Enrique Gonzalez
Amar Halilovic
Tobias Halmdienst
Mahimul Islam
Julian Jara-Ettinger
Natalie Kastel
Renana Keydar
Ashish K. Khanna
Mahdi Khoramshahi
Jihyun Kim
Mihyeon Kim
Youngbin Kim
Senka Krivic
Nikita Krasnytskyi
Arun Kumar
Junehyoung Kwon
EunJu Lee
Shane Lee
Peter R. Lewis 0001
Xue Li
Yijiang Li
Michal Lewandowski
Nathan Lloyd
Matthew B. Luebbers
Dezhi Luo
Haiyun Lyu
Dwarikanath Mahapatra
Kamal Maheshwari
Mallika Mainali
P. Mathur
Patrick Mederitsch
Shuwa Miura
Manuel Preston de Miranda
Reuth Mirsky
Shreya Mishra
Nina M. Moorman
Katelyn Morrison
John Muchovej
Bernhard Nessler
Felix Nessler
Hieu Minh Jord Nguyen
Abby Ortego
F. Papay
Antoine Pasquali
Hamed Rahimi
C. Raghu
Amanda L. Royka
Stefan Sarkadi
Jaelle Scheuerman
Simon Schmid
Paul Schrater
Anik Sen
Zahra Sheikhbahaee
Ke Shi
Reid G. Simmons
Nishant Singh
Mason O. Smith
Ramira van der Meulen
Anthia Solaki
Haoran Sun
Viktor Szolga
Matthew E. Taylor
Travis Taylor
Sanne van Waveren
Juan David Vargas
R. Verbrugge
Eitan Wagner
Justin D. Weisz
Ximing Wen
William Yeoh
Wenlong Zhang
Michelle Zhao
Shlomo Zilberstein
Proceedings of 1st Workshop on Advancing Artificial Intelligence through Theory of Mind
Mouad Abrini
Omri Abend
Dina M. Acklin
Henny Admoni
Gregor Aichinger
Nitay Alon
Zahra Ashktorab
Ashish Atreja
Moises Auron
Alexander Aufreiter
Raghav Awasthi
Soumya Banerjee
Joseph Barnby
Rhea Basappa
Severin Bergsmann
Djallel Bouneffouf
Patrick Callaghan
Marc Cavazza
Thierry Chaminade
Sonia Chernova … (voir 88 de plus)
Mohamed Chetouan
Moumita Choudhury
Axel Cleeremans
J. Cywinski
Fabio Cuzzolin
Hokin Deng
N'yoma Diamond
C. D. Pasquasio
Max J. van Duijn
Mahapatra Dwarikanath
Qingying Gao
Ashok Goel
Rebecca R. Goldstein
Matthew C. Gombolay
Gabriel Enrique Gonzalez
Amar Halilovic
Tobias Halmdienst
Mahimul Islam
Julian Jara-Ettinger
Natalie Kastel
Renana Keydar
Ashish K. Khanna
Mahdi Khoramshahi
Jihyun Kim
Mihyeon Kim
Youngbin Kim
Senka Krivic
Nikita Krasnytskyi
Arun Kumar
Junehyoung Kwon
EunJu Lee
Shane Lee
Peter R. Lewis 0001
Xue Li
Yijiang Li
Michal Lewandowski
Nathan Lloyd
Matthew B. Luebbers
Dezhi Luo
Haiyun Lyu
Dwarikanath Mahapatra
Kamal Maheshwari
Mallika Mainali
P. Mathur
Patrick Mederitsch
Shuwa Miura
Manuel Preston de Miranda
Reuth Mirsky
Shreya Mishra
Nina M. Moorman
Katelyn Morrison
John Muchovej
Bernhard Nessler
Felix Nessler
Hieu Minh Jord Nguyen
Abby Ortego
F. Papay
Antoine Pasquali
Hamed Rahimi
C. Raghu
Amanda L. Royka
Stefan Sarkadi
Jaelle Scheuerman
Simon Schmid
Paul Schrater
Anik Sen
Zahra Sheikhbahaee
Ke Shi
Reid G. Simmons
Nishant Singh
Mason O. Smith
Ramira van der Meulen
Anthia Solaki
Haoran Sun
Viktor Szolga
Matthew E. Taylor
Travis Taylor
Sanne van Waveren
Juan David Vargas
R. Verbrugge
Eitan Wagner
Justin D. Weisz
Ximing Wen
William Yeoh
Wenlong Zhang
Michelle Zhao
Shlomo Zilberstein
Cortical differences across psychiatric disorders and associated common and rare genetic variants
Kuldeep Kumar
Zhijie Liao
Jakub Kopal
Clara Moreau
Christopher R. K. Ching
Claudia Modenato
Will Snyder
Sayeh Kazem
Charles-Olivier Martin
C.O. Martin
Anne-Marie Bélanger
Valérie K. Fontaine
Khadije Jizi
Rune Boen
Guillaume Huguet
Zohra Saci
Leila Kushan
Ana I. Silva
Marianne B.M. van den Bree
David E.J. Linden … (voir 16 de plus)
Michael J. Owen
Jeremy Hall
Sarah Lippé
Bogdan Draganski
Laura Almasy
Sophia I. Thomopoulos
Neda Jahanshad
Ida E. Sønderby
Ole A. Andreassen
David C. Glahn
Armin Raznahan
Carrie Bearden
Tomas Paus
Paul M. Thompson
Sébastien Jacquemont
Online HD-tRNS over the right temporoparietal junction modulates social inference but not motor coordination
Quentin Moreau
Vincent Chamberland
Lisane Moses
Gabriela Milanova
Contemporary review of critical illness following allogeneic hematopoietic stem cell transplant in adults.
Laveena Munshi
Bruno Ferreryro
Cristina Gutierrez
Boris Böll
Pedro Castro
Sanjay Chawla
Matteo Di Nardo
Antoine Lafarge
Colleen McEvoy
Djamel Mokart
Antonio Paulo Nassar
Judith Nelson
Frédéric Pène
Peter Schellongowski
Elie Azoulay
Alcohol related hepatitis in intensive care units: clinical and biological spectrum and mortality risk factors: a multicenter retrospective study
Maxime Gasperment
Léa Duhaut
Nicolas Terzi
Côme Gerard
Luc Haudebourg
Alexandre Demoule
Mialy Randrianarisoa
Vincent Castelain
Sacha Sarfati
Fabienne Tamion
Charlene Le Moal
Christophe Guitton
Gabriel Preda
Arnaud Galbois
Thibault Vieille
Gaël Piton
Marika Rudler
Hafid AIT-OUFELLA
Background Alcohol related hepatitis is responsible for high morbidity and mortality, but little is known about the management of patients w… (voir plus)ith hepatitis specifically in intensive care units (ICU). Methods Retrospective study including patients with alcohol related hepatitis hospitalized in 9 French ICUs (2006–2017). Alcohol related hepatitis was defined histologically or by an association of clinical and biological criteria according to current guidelines. Results 187 patients (median age: 53 [43–60]; male: 69%) were included. A liver biopsy was performed in 51% of cases. Patients were admitted for impaired consciousness (71%), sepsis (64%), shock (44%), respiratory failure (37%). At admission, median SOFA and MELD scores were 10 [7–13] and 31 [26–40] respectively. 63% of patients received invasive mechanical ventilation, 62% vasopressors, and 36% renal replacement therapy. 66% of patients received corticosteroids, and liver transplantation was performed in 16 patients (8.5%). ICU and in-hospital mortality were 37% and 53% respectively. By multivariate analysis, ICU mortality was associated with SOFA score (without total bilirubin) (SHR 1.08 [1.02–1.14] per one-point increase), arterial lactate (SHR 1.08 [1.03–1.13] per 1 mmol/L) and MELD score (SHR 1.09 [1.04–1.14] per 1 point), while employment was associated with increased survival (HR 0.49 [0.28–0.86]). After propensity score weighting, the use of corticosteroids did not affect ICU mortality in the overall population but had a beneficial effect in the subgroup of patients with histological proof. Patient prognosis was also better in responders assessed by Lille score at day 7 (OR 6.67 [2.44–20.15], p  0.001). Conclusion Alcohol related hepatitis is a severe condition leading to high mortality in ICU patients. Severity of organ failure
Genetic modulation of brain dynamics in neurodevelopmental disorders: the impact of copy number variations on resting-state EEG
Adrien Dubois
Elisabeth Audet-Duchesne
Inga Sophia Knoth
Charles-Olivier Martin
Khadije Jizi
Petra Tamer
Nadine Younis
Sébastien Jacquemont
Sarah Lippé
Collective decision making by embodied neural agents
Nicolas Coucke
Mary Katherine Heinrich
Axel Cleeremans
Marco Dorigo
Abstract Collective decision making using simple social interactions has been studied in many types of multiagent systems, including robot s… (voir plus)warms and human social networks. However, existing multiagent studies have rarely modeled the neural dynamics that underlie sensorimotor coordination in embodied biological agents. In this study, we investigated collective decisions that resulted from sensorimotor coordination among agents with simple neural dynamics. We equipped our agents with a model of minimal neural dynamics based on the coordination dynamics framework, and embedded them in an environment with a stimulus gradient. In our single-agent setup, the decision between two stimulus sources depends solely on the coordination of the agent’s neural dynamics with its environment. In our multiagent setup, that same decision also depends on the sensorimotor coordination between agents, via their simple social interactions. Our results show that the success of collective decisions depended on a balance of intra-agent, interagent, and agent–environment coupling, and we use these results to identify the influences of environmental factors on decision difficulty. More generally, our results illustrate how collective behaviors can be analyzed in terms of the neural dynamics of the participating agents. This can contribute to ongoing developments in neuro-AI and self-organized multiagent systems.
Grokking Beyond the Euclidean Norm of Model Parameters
Tikeng Notsawo Pascal Junior
Grokking refers to a delayed generalization following overfitting when optimizing artificial neural networks with gradient-based methods. I… (voir plus)n this work, we demonstrate that grokking can be induced by regularization, either explicit or implicit. More precisely, we show that when there exists a model with a property