Portrait de Golnoosh Farnadi

Golnoosh Farnadi

Membre académique principal
Chaire en IA Canada-CIFAR
Professeure adjointe, McGill University, École d'informatique
Professeure associée, Université de Montréal, Département d'informatique et de recherche opérationnelle
Chercheuse invitée, Google
Sujets de recherche
Apprentissage profond
Modèles génératifs

Biographie

Golnoosh Farnadi est professeure associée à l'École d'informatique de l'Université McGill et professeure associée à l'Université de Montréal. Elle est membre académique principal à Mila - Institut québécois d'intelligence artificielle et est titulaire d'une chaire CIFAR d'intelligence artificielle au Canada.

Mme Farnadi a fondé le laboratoire EQUAL à Mila / Université McGill, dont elle est l'une des principales chercheuses. Le laboratoire EQUAL (EQuity & EQuality Using AI and Learning algorithms) est un laboratoire de recherche de pointe dédié à l'avancement des domaines de l'équité algorithmique et de l'IA responsable.

Étudiants actuels

Doctorat - HEC
Postdoctorat - McGill
Doctorat - McGill
Co-superviseur⋅e :
Doctorat - McGill
Co-superviseur⋅e :
Maîtrise recherche - McGill
Co-superviseur⋅e :
Maîtrise recherche - UdeM
Superviseur⋅e principal⋅e :
Stagiaire de recherche - McGill
Collaborateur·rice de recherche - UWindsor
Doctorat - McGill
Co-superviseur⋅e :
Collaborateur·rice de recherche - McGill
Collaborateur·rice alumni - UdeM
Collaborateur·rice de recherche - McGill
Stagiaire de recherche - McGill
Visiteur de recherche indépendant - McGill university
Stagiaire de recherche - McGill
Collaborateur·rice de recherche - McGill
Doctorat - McGill
Co-superviseur⋅e :
Postdoctorat - McGill
Doctorat - UdeM
Co-superviseur⋅e :
Maîtrise recherche - McGill

Publications

A taxonomy of weight learning methods for statistical relational learning
Sriram Srinivasan
Charles Dickens
Eriq Augustine
Lise Getoor
A taxonomy of weight learning methods for statistical relational learning
Sriram Srinivasan
Charles Dickens
Eriq Augustine
Lise Getoor
Individual Fairness in Kidney Exchange Programs
A Unifying Framework for Fairness-Aware Influence Maximization
The problem of selecting a subset of nodes with greatest influence in a graph, commonly known as influence maximization, has been well studi… (voir plus)ed over the past decade. This problem has real world applications which can potentially affect lives of individuals. Algorithmic decision making in such domains raises concerns about their societal implications. One of these concerns, which surprisingly has only received limited attention so far, is algorithmic bias and fairness. We propose a flexible framework that extends and unifies the existing works in fairness-aware influence maximization. This framework is based on an integer programming formulation of the influence maximization problem. The fairness requirements are enforced by adding linear constraints or modifying the objective function. Contrary to the previous work which designs specific algorithms for each variant, we develop a formalism which is general enough for specifying different notions of fairness. A problem defined in this formalism can be then solved using efficient mixed integer programming solvers. The experimental evaluation indicates that our framework not only is general but also is competitive with existing algorithms.
Fairness in Kidney Exchange Programs through Optimal Solutions Enumeration
Not all patients who need kidney transplant can find a donor with compatible characteristics. Kidney exchange programs (KEPs) seek to match … (voir plus)such incompatible patient-donor pairs together, usually with the objective of maximizing the total number of transplants. We propose a randomized policy for selecting an optimal solution in which patients’ equity of opportunity to receive a transplant is promoted. Our approach gives rise to the problem of enumerating all optimal solutions, which we tackle using a hybrid of constraint programming and linear programming. We empirically demonstrate the advantages of our proposed method over the common practice of using the first optimal solution obtained by a solver.