Portrait de Dzmitry Bahdanau

Dzmitry Bahdanau

Membre industriel principal
Chaire en IA Canada-CIFAR
Professeur adjoint, McGill University, École d'informatique
Chercheur scientifique IA, ServiceNow
Sujets de recherche
Apprentissage profond
Traitement du langage naturel

Biographie

Dzmitry Bahdanau est professeur adjoint à l’Université McGill et chercheur à ServiceNow Element AI. Précédemment, il a obtenu son doctorat à l'Université de Montréal / Mila – Institut québécois d’intelligence artificielle en travaillant avec Yoshua Bengio. Il s'intéresse aux questions fondamentales et appliquées concernant la compréhension du langage naturel. Ses principaux domaines de recherche comprennent l'analyse sémantique, les interfaces utilisateur du langage, la généralisation systématique et les systèmes hybrides neuronaux symboliques.

Étudiants actuels

Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Maîtrise recherche - McGill
Superviseur⋅e principal⋅e :
Doctorat - McGill
Co-superviseur⋅e :

Publications

BabyAI 1.1
David Y. T. Hui
Maxime Chevalier-Boisvert
BabyAI 1.1
David Y. T. Hui
Maxime Chevalier-Boisvert
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 … (voir plus)presents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent’s architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 × and improves imitation learning performance on the hardest level from 77% to 90 . 4% . We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
BabyAI 1.1
David Y. T. Hui
Maxime Chevalier-Boisvert
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 p… (voir plus)resents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent's architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 times and improves imitation learning performance on the hardest level from 77 % to 90.4 %. We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
BabyAI 1.1
David Y. T. Hui
Maxime Chevalier-Boisvert
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 p… (voir plus)resents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent's architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 times and improves imitation learning performance on the hardest level from 77 % to 90.4 %. We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
BabyAI 1.1
David Y. T. Hui
Maxime Chevalier-Boisvert
The BabyAI platform is designed to measure the sample efficiency of training an agent to follow grounded-language instructions. BabyAI 1.0 p… (voir plus)resents baseline results of an agent trained by deep imitation or reinforcement learning. BabyAI 1.1 improves the agent's architecture in three minor ways. This increases reinforcement learning sample efficiency by up to 3 times and improves imitation learning performance on the hardest level from 77 % to 90.4 %. We hope that these improvements increase the computational efficiency of BabyAI experiments and help users design better agents.
BabyAI 1.1
David Y. T. Hui
Maxime Chevalier-Boisvert
Combating False Negatives in Adversarial Imitation Learning (Student Abstract)
Konrad Żołna
Chitwan Saharia
Léonard Boussioux
David Y. T. Hui
Maxime Chevalier-Boisvert
CLOSURE: Assessing Systematic Generalization of CLEVR Models
Harm de Vries
Shikhar Murty
Philippe Beaudoin
Automated curriculum generation for Policy Gradients from Demonstrations
Anirudh Srinivasan
Maxime Chevalier-Boisvert
BabyAI: A Platform to Study the Sample Efficiency of Grounded Language Learning
Maxime Chevalier-Boisvert
Lucas Willems
Chitwan Saharia
Thien Huu Nguyen
Allowing humans to interactively train artificial agents to understand language instructions is desirable for both practical and scientific … (voir plus)reasons, but given the poor data efficiency of the current learning methods, this goal may require substantial research efforts. Here, we introduce the BabyAI research platform to support investigations towards including humans in the loop for grounded language learning. The BabyAI platform comprises an extensible suite of 19 levels of increasing difficulty. The levels gradually lead the agent towards acquiring a combinatorially rich synthetic language which is a proper subset of English. The platform also provides a heuristic expert agent for the purpose of simulating a human teacher. We report baseline results and estimate the amount of human involvement that would be required to train a neural network-based agent on some of the BabyAI levels. We put forward strong evidence that current deep learning methods are not yet sufficiently sample efficient when it comes to learning a language with compositional properties.
Systematic Generalization: What Is Required and Can It Be Learned?
Dzmitry Bahdanau*
Shikhar Murty*
Thien Huu Nguyen
Harm de Vries
BabyAI: First Steps Towards Grounded Language Learning With a Human In the Loop
Maxime Chevalier-Boisvert
Lucas Willems
Chitwan Saharia
Thien Huu Nguyen
Allowing humans to interactively train artificial agents to understand language instructions is desirable for both practical and scientific … (voir plus)reasons, but given the poor data efficiency of the current learning methods, this goal may require substantial research efforts. Here, we introduce the BabyAI research platform to support investigations towards including humans in the loop for grounded language learning. The BabyAI platform comprises an extensible suite of 19 levels of increasing difficulty. The levels gradually lead the agent towards acquiring a combinatorially rich synthetic language which is a proper subset of English. The platform also provides a heuristic expert agent for the purpose of simulating a human teacher. We report baseline results and estimate the amount of human involvement that would be required to train a neural network-based agent on some of the BabyAI levels. We put forward strong evidence that current deep learning methods are not yet sufficiently sample efficient when it comes to learning a language with compositional properties.