Portrait de Dzmitry Bahdanau

Dzmitry Bahdanau

Membre industriel principal
Chaire en IA Canada-CIFAR
Professeur adjoint, McGill University, École d'informatique
Chercheur scientifique IA, ServiceNow
Sujets de recherche
Apprentissage profond
Traitement du langage naturel

Biographie

Dzmitry Bahdanau est professeur adjoint à l’Université McGill et chercheur à ServiceNow Element AI. Précédemment, il a obtenu son doctorat à l'Université de Montréal / Mila – Institut québécois d’intelligence artificielle en travaillant avec Yoshua Bengio. Il s'intéresse aux questions fondamentales et appliquées concernant la compréhension du langage naturel. Ses principaux domaines de recherche comprennent l'analyse sémantique, les interfaces utilisateur du langage, la généralisation systématique et les systèmes hybrides neuronaux symboliques.

Étudiants actuels

Doctorat - McGill
Co-superviseur⋅e :

Publications

The Stack: 3 TB of permissively licensed source code
Denis Kocetkov
Raymond Li
Loubna Ben allal
Jia LI
Chenghao Mou
Carlos Muñoz Ferrandis
Yacine Jernite
Margaret Mitchell
Sean Hughes
Thomas Wolf
Leandro Von Werra
Harm de Vries
Large Language Models (LLMs) play an ever-increasing role in the field of Artificial Intelligence (AI)--not only for natural language proces… (voir plus)sing but also for code understanding and generation. To stimulate open and responsible research on LLMs for code, we introduce The Stack, a 3.1 TB dataset consisting of permissively licensed source code in 30 programming languages. We describe how we collect the full dataset, construct a permissively licensed subset, present a data governance plan, discuss limitations, and show promising results on text2code benchmarks by training 350M-parameter decoders on different Python subsets. We find that (1) near-deduplicating the data significantly boosts performance across all experiments, and (2) it is possible to match previously reported HumanEval and MBPP performance using only permissively licensed data. We make the dataset available at https://hf.co/BigCode, provide a tool called"Am I in The Stack"(https://hf.co/spaces/bigcode/in-the-stack) for developers to search The Stack for copies of their code, and provide a process for code to be removed from the dataset by following the instructions at https://www.bigcode-project.org/docs/about/the-stack/.
SantaCoder: don't reach for the stars!
Loubna Ben allal
Raymond Li
Denis Kocetkov
Chenghao Mou
Christopher Akiki
Carlos Muñoz Ferrandis
Niklas Muennighoff
Mayank Mishra
Alex Gu
Manan Dey
Logesh Kumar Umapathi
Carolyn Jane Anderson
Yangtian Zi
Joel Lamy Poirier
Hailey Schoelkopf
S. Troshin
Dmitry Abulkhanov
Manuel L. Romero
M. Lappert
Francesco De Toni … (voir 21 de plus)
Bernardo Garc'ia del R'io
Qian Liu
Shamik Bose
Urvashi Bhattacharyya
Terry Yue Zhuo
Ian Yu
Paulo Villegas
Marco Zocca
Sourab Mangrulkar
D. Lansky
Huu Nguyen
Danish Contractor
Luisa Villa
Jia LI
Yacine Jernite
Sean Christopher Hughes
Daniel Fried
Arjun Guha
Harm de Vries
Leandro Von Werra
The BigCode project is an open-scientific collaboration working on the responsible development of large language models for code. This tech … (voir plus)report describes the progress of the collaboration until December 2022, outlining the current state of the Personally Identifiable Information (PII) redaction pipeline, the experiments conducted to de-risk the model architecture, and the experiments investigating better preprocessing methods for the training data. We train 1.1B parameter models on the Java, JavaScript, and Python subsets of The Stack and evaluate them on the MultiPL-E text-to-code benchmark. We find that more aggressive filtering of near-duplicates can further boost performance and, surprisingly, that selecting files from repositories with 5+ GitHub stars deteriorates performance significantly. Our best model outperforms previous open-source multilingual code generation models (InCoder-6.7B and CodeGen-Multi-2.7B) in both left-to-right generation and infilling on the Java, JavaScript, and Python portions of MultiPL-E, despite being a substantially smaller model. All models are released under an OpenRAIL license at https://hf.co/bigcode.
MAGNIFICo: Evaluating the In-Context Learning Ability of Large Language Models to Generalize to Novel Interpretations
Arkil Patel
Satwik Bhattamishra
PromptMix: A Class Boundary Augmentation Method for Large Language Model Distillation
Gaurav Sahu
Olga Vechtomova
Issam Hadj Laradji
Data augmentation is a widely used technique to address the problem of text classification when there is a limited amount of training data. … (voir plus)Recent work often tackles this problem using large language models (LLMs) like GPT3 that can generate new examples given already available ones. In this work, we propose a method to generate more helpful augmented data by utilizing the LLM's abilities to follow instructions and perform few-shot classifications. Our specific PromptMix method consists of two steps: 1) generate challenging text augmentations near class boundaries; however, generating borderline examples increases the risk of false positives in the dataset, so we 2) relabel the text augmentations using a prompting-based LLM classifier to enhance the correctness of labels in the generated data. We evaluate the proposed method in challenging 2-shot and zero-shot settings on four text classification datasets: Banking77, TREC6, Subjectivity (SUBJ), and Twitter Complaints. Our experiments show that generating and, crucially, relabeling borderline examples facilitates the transfer of knowledge of a massive LLM like GPT3.5-turbo into smaller and cheaper classifiers like DistilBERT
Compositional Generalization in Dependency Parsing
Compositional Generalization in Dependency Parsing
Compositionality— the ability to combine familiar units like words into novel phrases and sentences— has been the focus of intense inter… (voir plus)est in artificial intelligence in recent years. To test compositional generalization in semantic parsing, Keysers et al. (2020) introduced Compositional Freebase Queries (CFQ). This dataset maximizes the similarity between the test and train distributions over primitive units, like words, while maximizing the compound divergence: the dissimilarity between test and train distributions over larger structures, like phrases. Dependency parsing, however, lacks a compositional generalization benchmark. In this work, we introduce a gold-standard set of dependency parses for CFQ, and use this to analyze the behaviour of a state-of-the art dependency parser (Qi et al., 2020) on the CFQ dataset. We find that increasing compound divergence degrades dependency parsing performance, although not as dramatically as semantic parsing performance. Additionally, we find the performance of the dependency parser does not uniformly degrade relative to compound divergence, and the parser performs differently on different splits with the same compound divergence. We explore a number of hypotheses for what causes the non-uniform degradation in dependency parsing performance, and identify a number of syntactic structures that drive the dependency parser’s lower performance on the most challenging splits.
Understanding by Understanding Not: Modeling Negation in Language Models
Negation is a core construction in natural language. Despite being very successful on many tasks, state-of-the-art pre-trained language mode… (voir plus)ls often handle negation incorrectly. To improve language models in this regard, we propose to augment the language modeling objective with an unlikelihood objective that is based on negated generic sentences from a raw text corpus. By training BERT with the resulting combined objective we reduce the mean top 1 error rate to 4% on the negated LAMA dataset. We also see some improvements on the negated NLI benchmarks.
Commonsense mining as knowledge base completion? A study on the impact of novelty
Stanisław Jastrzębski
Seyedarian Hosseini
Michael Noukhovitch
Commonsense knowledge bases such as ConceptNet represent knowledge in the form of relational triples. Inspired by recent work by Li et al., … (voir plus)we analyse if knowledge base completion models can be used to mine commonsense knowledge from raw text. We propose novelty of predicted triples with respect to the training set as an important factor in interpreting results. We critically analyse the difficulty of mining novel commonsense knowledge, and show that a simple baseline method that outperforms the previous state of the art on predicting more novel triples.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Guillaume Alain
Amjad Almahairi
Christof Angermüller
Nicolas Ballas
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
Arnaud Bergeron
James Bergstra
Valentin Bisson
Josh Bleecher Snyder
Nicolas Bouchard
Nicolas Boulanger-Lewandowski
Xavier Bouthillier
Alexandre De Brébisson
Olivier Breuleux … (voir 92 de plus)
pierre luc carrier
Kyunghyun Cho
Jan Chorowski
Paul F. Christiano
Tim Cooijmans
Marc-Alexandre Côté
Myriam Côté
Yann Dauphin
Olivier Delalleau
Julien Demouth
Guillaume Desjardins
Sander Dieleman
Laurent Dinh
M'elanie Ducoffe
Vincent Dumoulin
Dumitru Erhan
Ziye Fan
Orhan Firat
Mathieu Germain
Xavier Glorot
Ian G Goodfellow
Matthew Graham
Caglar Gulcehre
Philippe Hamel
Iban Harlouchet
Jean-philippe Heng
Balázs Hidasi
Sina Honari
Arjun Jain
Sébastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Alex Lamb
Pascal Lamblin
Eric Larsen
César Laurent
S. Lee
Simon-mark Lefrancois
Simon Lemieux
Nicholas Léonard
Zhouhan Lin
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
Pierre-Antoine Manzagol
Olivier Mastropietro
R. McGibbon
Roland Memisevic
Bart van Merriënboer
Vincent Michalski
Mehdi Mirza
Alberto Orlandi
Razvan Pascanu
Mohammad Pezeshki
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Francois Savard
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Dmitriy Serdyuk
Samira Shabanian
Etienne Simon
Sigurd Spieckermann
S. Subramanyam
Jakub Sygnowski
Jérémie Tanguay
Gijs van Tulder
Joseph Turian
Sebastian Urban
Francesco Visin
Harm de Vries
David Warde-Farley
Dustin J. Webb
M. Willson
Kelvin Xu
Lijun Xue
Li Yao
Saizheng Zhang
Ying Zhang
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Guillaume Alain
Amjad Almahairi
Christof Angermüller
Nicolas Ballas
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
Arnaud Bergeron
J. Bergstra
Valentin Bisson
Josh Bleecher Snyder
Nicolas Bouchard
Nicolas Boulanger-Lewandowski
Xavier Bouthillier
Alexandre De Brébisson
Olivier Breuleux … (voir 92 de plus)
pierre luc carrier
Kyunghyun Cho
Jan Chorowski
Paul F. Christiano
Tim Cooijmans
Marc-Alexandre Côté
Myriam Côté
Yann Dauphin
Olivier Delalleau
Julien Demouth
Guillaume Desjardins
Sander Dieleman
Laurent Dinh
M'elanie Ducoffe
Vincent Dumoulin
Dumitru Erhan
Ziye Fan
Orhan Firat
Mathieu Germain
Xavier Glorot
Ian J. Goodfellow
Matthew Graham
Caglar Gulcehre
Philippe Hamel
Iban Harlouchet
Jean-philippe Heng
Balázs Hidasi
Sina Honari
Arjun Jain
S'ebastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Alex Lamb
Pascal Lamblin
Eric P. Larsen
César Laurent
S. Lee
Simon-mark Lefrancois
Simon Lemieux
Nicholas Léonard
Zhouhan Lin
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
Pierre-Antoine Manzagol
Olivier Mastropietro
R. McGibbon
Roland Memisevic
Bart van Merriënboer
Vincent Michalski
Mehdi Mirza
Alberto Orlandi
Razvan Pascanu
Mohammad Pezeshki
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Francois Savard
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Dmitriy Serdyuk
Samira Shabanian
Etienne Simon
Sigurd Spieckermann
S. Subramanyam
Jakub Sygnowski
Jérémie Tanguay
Gijs van Tulder
Joseph P. Turian
Sebastian Urban
Francesco Visin
Harm de Vries
David Warde-Farley
Dustin J. Webb
M. Willson
Kelvin Xu
Lijun Xue
Li Yao
Saizheng Zhang
Ying Zhang
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (voir plus)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.