Portrait de Christian Gagné

Christian Gagné

Membre académique associé
Chaire en IA Canada-CIFAR
Professeur titulaire, Université Laval, Département de génie électrique et informatique
Directeur, Institute Intelligence and Data (IID)
Sujets de recherche
Apprentissage automatique médical
Apprentissage de la programmation
Apprentissage de représentations
Apprentissage profond
Vision par ordinateur

Biographie

Christian Gagné est professeur au Département de génie électrique et de génie informatique de l’Université Laval depuis 2008, et dirige l’Institut intelligence et données (IID). Il détient une chaire en IA Canada-CIFAR et est membre associé à Mila – Institut québécois d’intelligence artificielle. Il est également membre du Laboratoire de vision et systèmes numériques (LVSN), une composante du Centre de recherche en robotique, vision et intelligence machine (CeRVIM) ainsi que du Centre de recherche en données massives (CRDM) de l’Université Laval. Il fait partie des regroupements stratégiques REPARTI et UNIQUE du Fonds de recherche du Québec – Nature et technologies (FRQNT), du centre VITAM du Fonds de recherche du Québec – Santé (FRQS) et de l’Observatoire international sur les impacts sociétaux de l’IA et du numérique (OBVIA).

Ses intérêts de recherche portent sur l’élaboration de méthodes pour l’apprentissage automatique et l’optimisation stochastique. En particulier, il se consacre aux réseaux de neurones profonds, à l’apprentissage et au transfert de représentations, au méta-apprentissage ainsi qu’à l’apprentissage multitâche. Il s’intéresse également aux approches d’optimisation basées sur des modèles probabilistes ainsi qu’aux algorithmes évolutionnaires, entre autres pour l’optimisation boîte noire et la programmation automatique. Une part importante de ses travaux porte également sur la mise en pratique de ces techniques dans des domaines comme la vision numérique, la microscopie, la santé, l’énergie et les transports.

Étudiants actuels

Doctorat - Université Laval
Doctorat - Université Laval
Maîtrise recherche - Université Laval
Maîtrise recherche - Université Laval
Doctorat - Université Laval
Doctorat - Université Laval
Doctorat - Université Laval
Stagiaire de recherche - Université Laval
Doctorat - Université Laval
Doctorat - Université Laval
Doctorat - Université Laval

Publications

Tracking and predicting COVID-19 radiological trajectory on chest X-rays using deep learning
Daniel Gourdeau
Olivier Potvin
Patrick Archambault
Carl Chartrand-Lefebvre
Louis Dieumegarde
Reza Forghani
Alexandre Hains
David Hornstein
Simon Lemieux
Marie-Hélène Lévesque
Diego Martin
Lorne Rosenbloom
An Tang
Fabrizio Vecchio
Issac Yang
Nathalie Duchesne
Simon Duchesne
Tracking and predicting COVID-19 radiological trajectory on chest X-rays using deep learning
Daniel Gourdeau
Olivier Potvin
Patrick Archambault
Carl Chartrand-Lefebvre
Louis Dieumegarde
Reza Forghani
Alexandre Hains
David Hornstein
Simon Lemieux
Marie-Hélène Lévesque
Diego Martin
Lorne Rosenbloom
An Tang
Fabrizio Vecchio
Issac Yang
Nathalie Duchesne
Simon Duchesne
Radiological findings on chest X-ray (CXR) have shown to be essential for the proper management of COVID-19 patients as the maximum severity… (voir plus) over the course of the disease is closely linked to the outcome. As such, evaluation of future severity from current CXR would be highly desirable. We trained a repurposed deep learning algorithm on the CheXnet open dataset (224,316 chest X-ray images of 65,240 unique patients) to extract features that mapped to radiological labels. We collected CXRs of COVID-19-positive patients from an open-source dataset (COVID-19 image data collection) and from a multi-institutional local ICU dataset. The data was grouped into pairs of sequential CXRs and were categorized into three categories: ‘Worse’, ‘Stable’, or ‘Improved’ on the basis of radiological evolution ascertained from images and reports. Classical machine-learning algorithms were trained on the deep learning extracted features to perform immediate severity evaluation and prediction of future radiological trajectory. Receiver operating characteristic analyses and Mann-Whitney tests were performed. Deep learning predictions between “Worse” and “Improved” outcome categories and for severity stratification were significantly different for three radiological signs and one diagnostic (‘Consolidation’, ‘Lung Lesion’, ‘Pleural effusion’ and ‘Pneumonia’; all P 0.05). Features from the first CXR of each pair could correctly predict the outcome category between ‘Worse’ and ‘Improved’ cases with a 0.81 (0.74–0.83 95% CI) AUC in the open-access dataset and with a 0.66 (0.67–0.64 95% CI) AUC in the ICU dataset. Features extracted from the CXR could predict disease severity with a 52.3% accuracy in a 4-way classification. Severity evaluation trained on the COVID-19 image data collection had good out-of-distribution generalization when testing on the local dataset, with 81.6% of intubated ICU patients being classified as critically ill, and the predicted severity was correlated with the clinical outcome with a 0.639 AUC. CXR deep learning features show promise for classifying disease severity and trajectory. Once validated in studies incorporating clinical data and with larger sample sizes, this information may be considered to inform triage decisions.
Tracking and predicting COVID-19 radiological trajectory on chest X-rays using deep learning
Daniel Gourdeau
Olivier Potvin
Patrick Archambault
Carl Chartrand‐lefebvre
Louis Dieumegarde
Reza Forghani
Alexandre Hains
David Hornstein
Huy Khiem Le
Simon Lemieux
Marie‐hélène Lévesque
Diego R. Martin
Lorne Rosenbloom
An Tang
Fabrizio Vecchio
Issac Y Yang
N. Duchesne
Simon Duchesne
TRACKING AND PREDICTING COVID-19 RADIOLOGICAL TRAJECTORY USING DEEP LEARNING ON CHEST X-RAYS: INITIAL ACCURACY TESTING
Simon Duchesne
Olivier Potvin
Daniel Gourdeau
Patrick Archambault
Carl Chartrand-Lefebvre
Louis Dieumegarde
Reza Forghani
Alexandre Hains
David Hornstein
Simon Lemieux
Marie-Hélène Lévesque
Diego Martin
Lorne Rosenbloom
An Tang
Fabrizio Vecchio
Issac Yang
Nathalie Duchesne
Matching Feature Sets for Few-Shot Image Classification
Arman Afrasiyabi
Jean‐François Lalonde
In image classification, it is common practice to train deep networks to extract a single feature vector per input image. Few-shot classific… (voir plus)ation methods also mostly follow this trend. In this work, we depart from this established direction and instead propose to extract sets of feature vectors for each image. We argue that a set-based representation intrinsically builds a richer representation of images from the base classes, which can subsequently better transfer to the few-shot classes. To do so, we propose to adapt existing feature extractors to instead produce sets of feature vectors from images. Our approach, dubbed SetFeat, embeds shallow self-attention mechanisms inside existing encoder architectures. The attention modules are lightweight, and as such our method results in encoders that have approximately the same number of parameters as their original versions. During training and inference, a set-to-set matching metric is used to perform image classification. The effectiveness of our proposed architecture and metrics is demonstrated via thorough experiments on standard few-shot datasets-namely miniImageNet, tieredImageNet, and CUB-in both the 1- and 5-shot scenarios. In all cases but one, our method outperforms the state-of-the-art.
Active Learning for Capturing Human Decision Policies in a Data Frugal Context
Loïc Grossetête
Alexandre Marois
Bénédicte Chatelais
Daniel Lafond
On Learning Fairness and Accuracy on Multiple Subgroups
Changjian Shui
Gezheng Xu
Qi CHEN
Jiaqi Li
Charles Ling
Boyu Wang
We propose an analysis in fair learning that preserves the utility of the data while reducing prediction disparities under the criteria of g… (voir plus)roup sufficiency. We focus on the scenario where the data contains multiple or even many subgroups, each with limited number of samples. As a result, we present a principled method for learning a fair predictor for all subgroups via formulating it as a bilevel objective. Specifically, the subgroup specific predictors are learned in the lower-level through a small amount of data and the fair predictor. In the upper-level, the fair predictor is updated to be close to all subgroup specific predictors. We further prove that such a bilevel objective can effectively control the group sufficiency and generalization error. We evaluate the proposed framework on real-world datasets. Empirical evidence suggests the consistently improved fair predictions, as well as the comparable accuracy to the baselines.
On the benefits of representation regularization in invariance based domain generalization
Changjian Shui
Boyu Wang
On the benefits of representation regularization in invariance based domain generalization
Changjian Shui
Boyu Wang
Active Learning for Capturing Human Decision Policies in a Data Frugal Context
Loïc Grossetête
Alexandre Marois
Bénédicte Chatelais
Daniel Lafond
Neuronal activity remodels the F-actin based submembrane lattice in dendrites but not axons of hippocampal neurons
Flavie Lavoie-Cardinal
Anthony Bilodeau
Mado Lemieux
Marc-André Gardner
Theresa Wiesner
Gabrielle Laramée
Paul De Koninck
Deep Active Learning: Unified and Principled Method for Query and Training
Changjian Shui
Fan Zhou
Boyu Wang